Tenor® DX
VoIP MultiPath/Gateway Switch

Product Guide
P/N 480-0049-00-13
Table of Contents

About this Guide
- What’s included? ... 1-2
- Typographical Conventions 1-3
 - Product Guide Conventions 1-3
- Finding Help ... 1-4

Chapter 1: Overview
- What is the Tenor DX? 1-2
- Features ... 1-4
 - Unique Design .. 1-4
 - State-of-the-Art GUI Configuration and Network Management .. 1-4
 - SelectNet™ Technology Safety Net 1-4
 - PacketSaver™ reduces bandwidth consumption ... 1-5
 - Easy Connect to Console 1-5
 - Powerful System Monitoring 1-5
- Capabilities .. 1-6
 - Virtual Tie Line .. 1-6
 - SNMP Support .. 1-6
 - Call Detail Recording 1-6
 - IVR/RADIUS Support 1-6
 - NATAccess™ .. 1-7
- Call Routing/Management Options 1-8
 - Routing Table Options 1-10
- Call Management Features 1-11
- H.323 Gatekeeper Services 1-12
 - Gatekeeper ... 1-12
 - Zone Management 1-12
 - Call Registration 1-12
 - Border Element ... 1-12
 - Call Services ... 1-13
- SIP User Agent .. 1-15

Chapter 2: Hardware Components
- Hardware Description 2-2
 - Front Panel Connections and Reset Options 2-2
 - Front Panel LEDs 2-5
Chapter 3: Installation

Installation ... 3-2
Pre-Installation Guidelines .. 3-2
Inspect Package Contents ... 3-2
Rack Install ... 3-3
Connection ... 3-6
Connect to Line Interface - PBX 3-6
Connect to Trunk Interface - PSTN 3-7
Connect to Ethernet LAN .. 3-8
Connect to PC Console .. 3-9
Install Ground Safety Cable (if required) 3-10
Power up the System ... 3-11
Assign IP Address .. 3-12
Change IP Address .. 3-13
Load Software Upgrade ... 3-15

Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor

Overview .. 4-2
Tenor Configuration Manager 4-3
Getting Started with Configuration 4-3
Tenor Monitor ... 4-4
Getting Started with Monitoring 4-4

Chapter 5: Getting Started: Command Line Interface (CLI)

What is the Command Line Interface? 5-2
Options .. 5-2
Modes ... 5-2
Navigation .. 5-2
User Login IDs ... 5-3
Access CLI .. 5-3
Telnet Connection .. 5-3
Serial Port Connection .. 5-4
Configuration via CLI .. 5-5

Chapter 6: Call Detail Recording

Overview .. 6-2
What is a CDR? .. 6-3
Establish connection between Tenor DX and CDR Server 6-4
Configure Tenor DX for connection to CDR Server .. 6-5
Setup CDR Server and assign password .. 6-5
Change CDR Password .. 6-5
Tenor DX Establishes Connection with CDR Server 6-6
CDR Server Establishes Connection with Tenor DX 6-6
CDR Output .. 6-7
Sample Record for Standard and Extended CDR Format 0, 1, 100, 101 6-7
Sample Record for Extended Tenor DX CDR Format 3, 4, 103, 104: 6-10

Chapter 7: System Alarms
Overview ... 7-2
Monitor Alarms ... 7-2
 How to Read Alarms .. 7-2
 Valid Alarms ... 7-4
View Alarms .. 7-7
 Display all Alarms .. 7-7
 Display Active Alarms .. 7-7
 Display Alarm History .. 7-8

Chapter 8: Diagnostics/Maintenance
Before you Begin .. 8-2
Monitor LEDs ... 8-2
Diagnostics .. 8-3
 Common Symptoms/Problems .. 8-3
 Verify Unit Provisioning .. 8-4
 Ping Unit ... 8-4
Monitoring .. 8-5
 Alarms .. 8-5
General Maintenance .. 8-5
 Restore Factory Defaults .. 8-5
 Reset System .. 8-5
 Change Password .. 8-5
 Change Unit Date and Time .. 8-6
If you need Additional Help ... 8-7

Appendix A: Specifications/Approvals
INDEX
GLOSSARY
WARRANTY
Documentation Notice
About this Guide
About this Guide

What’s included?

This product guide is divided into chapters; each chapter describes a specific topic. The following chapters are included:

- **About this Guide**: Describes what is included in the Product Guide, including typographical conventions.
- **Chapter 1: Overview**: Includes a general overview of the product, including a description of the Tenor DX’s features and capabilities.
- **Chapter 2: Hardware Components**: Hardware description, including the front and rear panels, as well as LEDs and required cables.
- **Chapter 3: Installation**: Describes how to install the Tenor DX unit, including how to connect, power up and assign the IP address.
- **Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor**: This chapter tells you how to use the Tenor Configuration Manager and Tenor Monitor to configure/monitor the unit.
- **Chapter 5: Getting Started: Command Line Interface (CLI)**: This chapter tells you how to access the CLI and execute commands. A description of each CLI mode is also included.
- **Chapter 6: Call Detail Recording**: Describes the Call Detail Recording (CDR) feature, including how to set up the CDR server and assign a password. In addition, instructions for reading CDR output are also included.
- **Chapter 7: System Alarms**: Describes how to monitor and view alarms via Command Line Interface (CLI). In addition, alarm definitions are also included.
- **Chapter 8: Diagnostics/Maintenance**: Describes how to troubleshoot and monitor the health of the system.
- **Appendix A: Specifications/Approvals**: A list of Tenor DX specifications and approvals.
- **Glossary**
- **Index**
- **Warranty/Approvals**
Typographical Conventions

Product Guide Conventions

Certain typographical conventions are used throughout this product guide. See below.

- All commands you enter via keystrokes appear in **bold** (e.g., Press **Enter** or Press **Ctrl-I**).
- All text commands you enter via Telnet session or command line typing appear in *italics* (e.g., type `active`).
- There are three types of special text that are designed to reveal supplemental information: Note, Warning, and Caution. See below.

![NOTE](image)

A **NOTE** provides additional, helpful information. This information may tell you how to do a certain task or just be a reminder for how-to's given in previous sections. (i.e., For a list of valid commands at any time, type `?`)

![WARNING](image)

A **WARNING** provides information about how to avoid harming your VoIP equipment or other equipment (i.e., Do not stack more than 4 units together.)

![CAUTION](image)

A **CAUTION** provides information about how to avoid injury to yourself or to others (e.g., Do not install the equipment during a lightning storm).
Finding Help

Refer to the Product Guide for help. The Table of Contents and Index tells you where to find information easily.

Extensive configuration help is available via the Tenor Configuration Manager and Tenor Monitor online help systems or the Command Line Interface online help system. See Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor for more information.
Chapter 1: Overview

This chapter gives you a general overview of the Tenor DX including feature descriptions and capabilities. Specifically, the following topics are covered:

- A description of Tenor DX
- Features
- Capabilities
- Call Routing/Management Options
- H.323 Gatekeeper Services
What is the **Tenor DX?**

The **Tenor DX** is a high-density VoIP (Voice over Internet Protocol) H.323/SIP switch that converts voice, fax, and modem data on digital circuit switched trunks, and transmits it over the IP network. The **Tenor DX** integrates a gateway, gatekeeper, border element, intelligent call routing, and supports H.323/SIP, and QoS all in one solution. The gateway converts circuit switched calls to VoIP calls, the gatekeeper performs IP call routing functions, and the border element distributes the call routing directories throughout the network.

With its MultiPath architecture, the **Tenor DX** can intelligently route calls between the PBX, the PSTN, and the IP network to achieve the best combination of cost and quality. It can also route calls over IP to reduce costs, and then transparently “hop off” to the PSTN, to reach off-net locations.

Figure 1-1 Tenor DX VoIP Switch

The **Tenor DX** is available in two configuration types:

- **MultiPath Switch** (intended for PBX and PSTN connectivity)
- **Gateway** (intended for VoIP and PSTN trunk port connectivity).

The **MultiPath Switch** is mainly intended for symmetrical multipath applications. The number of VoIP channels is equal to half the number of PSTN channels. The **MultiPath Switch** configuration enables connectivity between the customer equipment (i.e., PBX), PSTN and VoIP Network. The **Gateway** is mainly intended for trunking applications interfacing between the VoIP network and the circuit switched network (PSTN). The number of VoIP channels equals the number of PSTN channels.

Whichever configuration you choose, the high performance unit provides two 10/100 BaseT connections and one RS-232 serial console port connection. The unit also incorporates an intelligent call routing engine which regulates system resources and configuration while coordinating all voice traffic activity in the unit.

The **Tenor DX** may be managed by the **Tenor Configuration Manager** and **Tenor Monitor**. Through the **Configuration Manager**, you can configure all options, such as signaling data, trunk groups, dial plans, and call routing numbers. An easy-to-use Java-based installation process enables you to install the manager and start configuring within minutes. Through the **Tenor Monitor**, you can monitor the health of the system, including alarms, call detail records, etc. Both the **Configuration Manager** and **Tenor Monitor** provide comprehensive on-line help systems that are available at your fingertips.
Chapter 1: Overview

The unit’s simple plug and play embedded system architecture brings VoIP technology to your network without changing your existing telephony infrastructure. Your network stays as is, and the call type is transparent to the user. This technology boasts superior voice quality without compromising reliability.

The Tenor DX is available in the versions listed in Table 2-1.

Table 2-1 Tenor DX MultiPath Switch configurations

<table>
<thead>
<tr>
<th>Tenor Digital DX MultiPath Configurations</th>
<th>Spans Available (RJ-45 port for T1/E1 connection)</th>
<th>VoIP Channels Supported</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX2008</td>
<td>2</td>
<td>8 VoIP connections</td>
<td>T1/E1</td>
</tr>
<tr>
<td>DX2016</td>
<td>2</td>
<td>16 VoIP connections</td>
<td>T1/E1</td>
</tr>
<tr>
<td>DX2024</td>
<td>2</td>
<td>24 VoIP connections</td>
<td>T1</td>
</tr>
<tr>
<td>DX2030</td>
<td>2</td>
<td>30 VoIP connections</td>
<td>E1</td>
</tr>
<tr>
<td>DX4048</td>
<td>4</td>
<td>48 VoIP connections</td>
<td>2 x T1</td>
</tr>
<tr>
<td>DX4060</td>
<td>4</td>
<td>60 VoIP connections</td>
<td>2 x E1</td>
</tr>
<tr>
<td>DX6120</td>
<td>6</td>
<td>120 VoIP connections</td>
<td>T1/E1</td>
</tr>
<tr>
<td>DX8120</td>
<td>8</td>
<td>120 VoIP connections</td>
<td>T1/E1</td>
</tr>
</tbody>
</table>

Table 2-2 Tenor DX Gateway configurations

<table>
<thead>
<tr>
<th>Tenor Digital DX Gateway Configurations</th>
<th>Spans Available (RJ-45 port for T1/E1 connection)</th>
<th>VoIP Channels Supported</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX2048</td>
<td>2</td>
<td>48 VoIP connections</td>
<td>2 x T1</td>
</tr>
<tr>
<td>DX2060</td>
<td>2</td>
<td>60 VoIP connections</td>
<td>2 x E1</td>
</tr>
<tr>
<td>DX4096</td>
<td>4</td>
<td>96 VoIP connections</td>
<td>4 x T1</td>
</tr>
<tr>
<td>DX4120</td>
<td>4</td>
<td>120 VoIP connections</td>
<td>4 x E1</td>
</tr>
</tbody>
</table>
Chapter 1: Overview

Features

The Tenor DX’s specific features are explained below.

Unique Design

Tenor DX packs powerful VoIP features into one compact unit. The system’s embedded design enables you to configure the unit directly without depending on another operating system; it can be either placed on a table or mounted in a 19” rack.

With its MultiPath technology, the Tenor can be installed without upgrades to the existing voice or data network. Tenor connects to the data network through a 10/100 Ethernet interface, and to the enterprise and public voice network through multiple T1/E1 or PRI interfaces. In addition, with a wide range of configurations available, it offers the flexibility for you to select a configuration that best matches your needs.

State-of-the-Art GUI Configuration and Network Management

Once the unit is connected, the Tenor Configuration Manager makes configuring a Tenor DX easy. Through the manager, you are able to set all configuration parameters, such as unit, signaling, and call type features, as well as monitor the unit for alarms, and call information.

In addition, you can configure the unit via Command Line Interface (CLI). Through this simple telnet session, you can access all configuration options, including an online help system, built into the CLI, which provides help for all features and functions. Just type help at any prompt, and data about that field will be displayed.

SelectNet™ Technology Safety Net

Quality of service is virtually guaranteed. Tenor DX’s built-in patented SelectNet™ Technology provides a “safety net,” which virtually guarantees that each call going VoIP will not only be routed successfully, but will deliver high voice quality.

SelectNet monitors the IP network performance for VoIP calls. If the performance characteristics become unacceptable—according to the delay, jitter, and packet loss specifications you configure—the Tenor DX will switch the call to the PSTN automatically and transparently. The Tenor continuously monitors your data network for jitter, latency and packet loss, and transparently switches customer calls to the PSTN when required.
PacketSaver™ reduces bandwidth consumption

PacketSaver packet multiplexing technology reduces the amount of IP bandwidth required to support multiple calls flowing between two endpoints. PacketSaver minimizes bandwidth usage by aggregating samples from multiple VoIP conversations and packing them into a larger IP packet with a single IP header. The process removes the need to send a bulky IP header with individual voice packets. As a result, it eliminates the transmission of redundant information.

Conventional VoIP Transmission Sends Many Redundant Packet Headers

Tenor using PacketSaver to Minimize Bandwidth Usage

Easy Connect to Console

Plugging a serial cable between the unit’s RS-232 port and your PC’s console port, will allow local unit management. Through the console connection, you are able to assign an IP address. In addition, if you are directly connected to the unit, you are able to configure the unit via Command Line Interface (CLI).

Powerful System Monitoring

There are many different ways to monitor the health of the unit, including LEDs and alarms. LEDs appear on the front of the unit. The LEDs light up according to operations and alarms the system is experiencing.

Through the Tenor Monitor (see Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor) and the Command Line Interface (CLI) (see Chapter 5: Getting Started: Command Line Interface (CLI)), you can view a list of active system alarms, as well as view an alarm history. Each alarm indicates the unit’s operational status.
Chapter 1: Overview

Capabilities

Virtual Tie Line

Tenor DX can emulate a tie trunk. It provides all of the functionality of a tie trunk, including the considerable cost savings, but eliminates the need for a PBX trunk to be configured, or marked as a tie trunk. A traditional tie trunk is a PBX-configured direct connection between two PBXs in separate locations. The tie trunk bypasses the PSTN network.

Your PBX does not need any additional configuration. *Tenor DX* treats all the trunks the same without compromising voice quality.

SNMP Support

The *Tenor DX* supports Simple Network Management Protocol (SNMP), the standard protocol used to exchange network information between different types of networks.

Call Detail Recording

Through the Call Detail Record (CDR) feature, the *Tenor DX* generates a call record at the completion of each call, typically for accounting purposes. A CDR is a string of data that contains call information such as call date and time, call duration, calling party, and called party. *Tenor DX* may store Call Detail Records locally or they can be sent to a CDR server within the network. The CDR contains sufficient information to capture billing data, which can be used to create billing reports using third party billing software.

IVR/RADIUS Support

Interactive Voice Response (IVR) is a feature of the *Tenor DX* that enables you to offer services, such as Pre-paid calling cards and Post-paid accounts, to your customers.

The Tenor uses the RADIUS (Remote Authentication Dial-In User Service), for authenticating and authorizing user access to the VoIP network, including ANI Authentication (Types 1 and 2). The RADIUS is a standard protocol which provides a series of standardized message formats for transmitting and receiving dialed information, account data and authorization codes between the network access gateway and the billing server.
NATAccess™

NATAccess is an intelligent network address translation technology. It enables VoIP networks with multiple H.323 endpoints to operate behind firewalls equipped with H.323 Network Address Translation (NAT); this provides maximum network security. NATAccess simplifies deployment by eliminating the need to place the Tenor on a public IP network. Using NATAccess provides easy, secure expansion between multiple VoIP sites. In addition, NAT technology in the Tenor permits the use of private subnets at the same time; in-house calls will never go over the public internet.

Figure 1-2 Tenor with NATAccess Deployment
Chapter 1: Overview

Call Routing/Management Options

Call Routing

Line Circuit Originated Calls. Calls coming from a Line Circuit may be switched to either the data network as a VoIP call or to a Trunk Circuit typically for connection to another circuit switched network such as the PSTN. The routing decision made by the Tenor is based upon your configuration and the dialed number.

Figure 1-3 Line Circuit Call Routing

Trunk Circuit Originated Calls. A call coming from a Trunk Circuit may be switched to either the data network as a VoIP call, a Line Circuit, or trunk typically for connection to a termination device on the user’s premises such as a PBX. The routing decision made by the Tenor DX is based upon your configuration and the dialed number.
Intra-trunk Routing - “Hairpinning”. As a result of intra-trunk routing, incoming calls from a particular Trunk Circuit are switched by Tenor DX to be routed back out the same trunk circuit routing group.

Data Network Calls. Calls coming from the data network can be routed to the Line Circuit or Trunk Circuit spans. The Tenor will route calls based upon the dialed number. If the number is configured as a local phone number, the call will be sent to a Line circuit for termination, otherwise the call is considered a “Hop-Off call” and the Tenor sends it out through a Trunk Circuit span, typically connected to the PSTN.
Routing Table Options

There are four types of routing databases you can configure: Bypass Directory Numbers (BPN), Hunt Local Directory Numbers (Hunt LDN), Hop-Off Directory Numbers (HDN) and Static Routes.

Bypass Directory Numbers. Bypass Directory Numbers (BDN) are telephone numbers that are automatically routed directly from a line circuit to a trunk circuit (PSTN); they will not be routed VoIP. Some examples of bypass numbers include toll-free calls, emergency calls (i.e., 911), or high security calls.

Hunt Local Directory Numbers. A Hunt Local Directory Number (Hunt LDN) is a phone number reachable through local Line Circuits.

Hop-Off Directory Number. A Hop-off PBX call travels over IP, and then “hops” off into the public network (PSTN) on the distant side to reduce or eliminate public toll charges (also known as Leaky Area Map). A Hop-Off Directory Number is routed over the IP to another Tenor location and then out to the Trunk circuit, possibly to the PSTN as a local call.

Static Routes. Static Routes are used between networks and other H.323 devices that are not registered to the network through the Border Element (such as non-Quintum gateways). A static route associates endpoints (as represented by their IP address) with Directory Number patterns.
Call Management Features

Dynamic Call Routing. *Tenor DX*’s intelligent call routing capabilities are state-of-the-art. The unit automatically detects and supports three call types: voice, fax, and modem.

Tenor DX will first identify the call origination site—trunk circuit, line circuit, or IP routing group—and then route the call according to any parameters you have configured in the routing database. Each call may be routed via circuit switched path between any two circuit groups, or compressed and transported via VoIP when connecting to an IP routing group. Trunk circuits are those that typically connect to another circuit switched network such as the PSTN. Line circuits typically connect to a termination device on the user premises, such as a PBX.

Trunk Group Support. The *Tenor DX* supports trunk groups, which are groups of T1 or E1 channels used to connect the Tenor to other carriers (such as local telephone company) or to PBX equipment used for circuit aggregation.

Public/Private Dial Plan Support. The *Tenor DX* supports public and private dial plans. A public dial plan includes numbers which conform to the international dialing plan (E.164) of a country code + city/area code + local number. For a public dial plan, you can define the numbering plan structure for the *Tenor DX* to use for outgoing calls.

A private dial plan does not conform to a public dialing plan (i.e., 3 digit dialing plan); through the *Tenor DX* you are able to configure the unique pattern/dialing plan structure, including number length.

You are able to configure which dial plan to use for incoming and outgoing calls, including whether other options such as hop-off calls, will use a public or private dial plan.

User Programmable Dial Plan Support. The User Programmable Dial Plan Support (UPDP) enables the Tenor to identify a completely customizable set of digit sequences, such as Local, National, International or Private Numbers.

PassThrough support for certain call types. Certain call types can be directly routed to a trunk circuit, without going IP. There are several routing tables you can configure via the Configuration Manager to adjust how the *Tenor DX* unit routes these types of “pass through” numbers. For example, you may want to configure 911 as a “bypass number”, which means that all 911 calls coming into *Tenor DX* from the line circuit will be routed directly to a Trunk circuit presumably connected to a PSTN. Bypass calls are never routed over IP.

Hop-off PBX Calls. Hop-off numbers are phone number patterns for calls to be routed out through trunks. They are entered in a Hop-off Number Directory and associated with trunks where matching calls should be sent.

Tenor DX supports those hop-off PBX calls where the destination *Tenor DX* is programmed to route the call to the PSTN via Trunk Circuit. (A hop-off PBX call is a toll call which hops through a private network to reduce or eliminate the toll charge.) The destination *Tenor DX* unit is configured with the phone numbers to be “supported” for this feature.
H.323 Gatekeeper Services

The Tenor DX unit’s built-in H.323 gatekeeper performs IP call routing functions, such as call control and administrative services to another Tenor DX unit, or another H.323 endpoint. The gatekeeper’s functionality complies with the H.323 industry specifications for voice control and management.

Gatekeeper

A Gatekeeper in an H.323 network provides call control services and other services to H.323 endpoints (i.e., gateways, terminals, and MCUs). The Tenor DX has a built-in H.323 gatekeeper which complies to the H.323 industry specifications for voice control and management. The gatekeeper performs call routing functions for calls entering and exiting a site.

The Gatekeeper performs IP call routing functions, such as Call Control Signaling and Call Authorization for Gateways, IP phones, and H.323 terminals. The Gatekeeper communicates with other Gatekeepers through a Border Element. When using a group of Tenor DX units, you can assign one unit as the Gatekeeper for the network. We recommend you configure each as its own gatekeeper.

Tenor DX supports gatekeeper to gatekeeper communication using the standard LRQ (Location Request)/LCF (Location Confirm) messaging scheme.

Zone Management

A zone is a group of H.323 defined endpoints controlled by a Gatekeeper. Endpoints can be gateways (i.e., Tenor DX), terminals, and/or multipoint conferencing units (MCUs). Endpoints establish control channels with a gatekeeper for registration, admission, and security. Call routing information about the endpoint is sent to the gatekeeper, including: IP address, unit type (gateway, terminal, or MCU) and routing information (such as phone numbers, number patterns, etc.).

A collection of zones is an administrative domain. An administrative domain provides call routing services for its zones through gatekeeper to gatekeeper messages or gatekeeper to border element messages (see below for more information).

Call Registration

When registration from an H.323 endpoint is complete and a call is originated, the call request is sent to the gatekeeper. The call request provides the Gatekeeper with the dialed number and requests the routing information. The gatekeeper confirms the dialed number and supplies the endpoint with the destination IP address. For example, a Tenor DX’s gatekeeper will act as the gatekeeper for that zone and all of the other endpoints will register with it.

Border Element

The Tenor DX’s gatekeeper uses a border element to gain access to the routing database of the administrative domain for the purpose of call completion or any other services that involve communications with other endpoints out of the administrative domain. The border element functionality is built into the Tenor DX unit, along with the gateway and gatekeeper.
The primary function of the border element is to collect, manage, and distribute call routing information. A gatekeeper will establish a service relationship with a border element; the gatekeeper provides its zones capabilities and the border element shares call routing capabilities of other zones in the administrative domain. Through the border element, gatekeepers from multiple zones will be able to communicate.

A border element also establishes relationships with other border elements to route between administrative domains. If a gatekeeper cannot resolve an address, it contacts the border element.

In addition, if you are using more than one Tenor unit, you can configure one of the border elements for that zone. The Tenor DX unit can use two border elements: primary and secondary. These work together as one entity to provide redundancy and fault tolerance; there are no hierarchal differences.

![Diagram of Gatekeeper and Border Element](image)

Call Services

Gatekeepers provide services such as addressing, authorization and authentication of terminals and gateways, bandwidth management, accounting, billing, and charging. Gatekeepers also provide call-routing services. Specifically, the Tenor DX Gatekeeper provides the functions which follow:

Address Translation. The gatekeeper translates telephone numbers into IP addresses and vice versa. It performs Alias Address (phone number) to Transport Address (IP address) translation when an endpoint requests service. The Gatekeeper uses a translation table to translate an Alias Address (an address such as an H.323 identifier that a user may not understand) to a transport address. The translation table is updated using Registration messages.

Autodiscovery. The gatekeeper is discovered in one of the following ways: An endpoint sends an IP broadcast called a Gatekeeper Request message (GRQ) message (which includes that correct gatekeeper name) to discover a Gatekeeper OR the endpoint will discover a gatekeeper by its IP address.

Routing. The gatekeeper identifies the IP address of endpoints in its administrative domain. The gatekeeper builds a routing database from information obtained from the border element and also from gateways and H.323 endpoints.
Admissions Control. All H.323 endpoints must register and request permission to enter the gatekeeper’s zone; the gatekeeper will confirm or deny access to the network. The gatekeeper authorizes network access and protects the integrity of the network using Admissions Request (ARQ), Admissions Confirmation (ACF) and Admissions Reject (ARJ) messages.
SIP User Agent

SIP (Session Initiation Protocol) is a signaling protocol used to establish a session on an IP network for voice control and management; it is a request-response protocol that closely resembles Hypertext Transfer Protocol (HTTP), which forms the basis of the World Wide Web. SIP re-uses many of the constructs and concepts of Internet protocols such as HTTP and Simple Mail Transfer Protocol (SMTP). The purpose of SIP is only to establish/change/terminate sessions. SIP is not concerned with the content or details of the session.

SIP is Transport layer-independent, which means it can be used with any transport protocol: UDP, TCP, ATM, etc. It is text-based, so it requires no encoding/decoding like H.323. And SIP supports user mobility, using proxies and redirecting requests to your current location.

When configured for SIP the Tenor will act as a SIP User Agent (Endpoint) as defined in IETF RFC3261. Multiple user agents allow for separate agents to be allocated to each SIP call. It will be able to gateway calls to and from the IP network, and Customer Premise Equipment (CPE) such as phones, PBX's, and FAX machines, or the Public Switched Telephone Network (PSTN). The Tenor SIP User Agent will work in conjunction with an external SIP proxy or redirect server to route and connect calls over SIP based networks.

There are three basic components of SIP:

1. User Agent (Endpoint)
 - client element, initiates calls
 - server element, answers calls
2. Network Server (Proxy Server or Redirect Server)
 - name resolution
 - user location
 - redirect and forking
3. Registrar
 - Stores registration information in a location service using a non-SIP protocol.
Chapter 2: Hardware Components

This chapter tells you what is contained in your hardware package. A description of each component is also included.

Specifically, the following topics are covered:

- Hardware Description
- Cables
Hardware Description

The Tenor DX is a stackable/rack mountable device which provides PSTN and PBX connections (through T1/E1/PRI lines), as well as connections to the Ethernet LAN and a PC. The unit provides eight RJ-45 ports in which you can connect to a PBX or the PSTN.

The unit’s front panel includes connection jacks, LEDs, a reset button, and a diagnostics option; the back panel includes a power cord connection site, an on/off switch, and a label.

Front Panel Connections and Reset Options

Figure 2-1 Tenor DX Front Panel

- **Ports 1-8.** One RJ-45 jack for each port supports a connection to a line side (PBX) or other customer equipment via upstream T1 or E1 lines, or to the trunk side (PSTN) via downstream T1 or E1 lines.

 Each T1 line provides 24 channels. For each T1 interface, there are two types of signaling supported: Channel Associated Signaling (CAS) and Common Channel Signaling (CCS). For T1 using CAS, channels 1-24 are available; for T1 using CCS, channels 1-23 are available.

 Each E1 line provides 30B (Bearer) channels and 1D (Data) signaling channel. For each E1 interface, there are two types of signaling supported: Channel Associated Signaling (CAS) and Common Channel Signaling (CCS).

 Adjacent port pairs (i.e., 1/2, 3/4, etc.) are configured by default to connect to each other (power off bypass) when the unit is turned off, or when the unit is in Offline mode. This is the preferred method when connecting one of the lines to a PBX, and its adjacent pair to the PSTN. However, if you have adjacent port pairs that are connected to smaller devices (i.e., both going to PSTN) in which you do not want the two ports to be connected to each other in case of power off or offline, you should set the power off bypass = 0. Each pair of ports (1/2, 3/4, 5/6 and 7/8) have their own online/offline and power off bypass control. See the Tenor Configuration Manager online help or the Command Line Interface (CLI) guide for specific configuration information.

- **Reset.** Enables you to reset the system.

- **Diag.** Enables you to perform software diagnostic procedures.

- **LAN 1/LAN2.** 10/100 Base-T Ethernet ports. LAN 1 port provides an RJ-45 jack for an individual connection to a 10/100 Ethernet LAN switch or hub via RJ-45 cable; it is individually configured with a unique IP and MAC address. LAN2 Ethernet port is reserved for future use.
Chapter 2: Hardware Components

Figure 2-2 10/100 BASE-T Ethernet Port Pin Order

![10/100 BASE-T Ethernet Port Pin Order](image)

Table 2-1 Input/Output 10/100 Ethernet port

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Definition</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX +</td>
<td>Transmit Data</td>
<td>White w/orange</td>
</tr>
<tr>
<td>2</td>
<td>TX -</td>
<td>Transmit Data</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>RX +</td>
<td>Receive Data</td>
<td>White w/green</td>
</tr>
<tr>
<td>4</td>
<td>RSVD</td>
<td>Reserved</td>
<td>Blue</td>
</tr>
<tr>
<td>5</td>
<td>RSVD</td>
<td>Reserved</td>
<td>White w/blue</td>
</tr>
<tr>
<td>6</td>
<td>RX -</td>
<td>Receive Data</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>RSVD</td>
<td>Reserved</td>
<td>White w/Brown</td>
</tr>
<tr>
<td>8</td>
<td>RSVD</td>
<td>Reserved</td>
<td>Brown</td>
</tr>
</tbody>
</table>

- **Console port.** This RS-232 connector is used for connection to a PC’s serial port via DB-9 serial cable at 38400 BPS 8N1, without flow control. The input/output signals are listed in Table 2-2.

Figure 2-3 DB-9 Female Connector Pin Order

![DB-9 Female Connector Pin Order](image)

Table 2-2 Serial RS232 DB-9 Connector Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>2</td>
<td>TXD</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>3</td>
<td>RXD</td>
<td>Receive Data</td>
</tr>
<tr>
<td>4</td>
<td>CD</td>
<td>Carrier Detect</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>N.C.</td>
<td>No Connect</td>
</tr>
</tbody>
</table>
Chapter 2: Hardware Components

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>N.C.</td>
<td>No Connect</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
<td>No Connect</td>
</tr>
<tr>
<td>9</td>
<td>N.C.</td>
<td>No Connect</td>
</tr>
</tbody>
</table>
Front Panel LEDs

The LEDs display the health of the system. There are different types of LEDs: network, LAN, Alert and Power. For LED definitions, see Table 2-3.

![Figure 2-4 Front Panel LEDs](image)

Table 2-3 Front Panel LEDs Definitions

<table>
<thead>
<tr>
<th>LED</th>
<th>Label</th>
<th>LED Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network (PSTN) or PBX</td>
<td>1-8</td>
<td>Red</td>
<td>Receive Path Error Indication. Line is not connected or other receive errors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yellow</td>
<td>Receive Path Error Indication. Line is not connected or other receive errors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green</td>
<td>Indicates B channels are busy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>The port is empty.</td>
</tr>
<tr>
<td>LAN1</td>
<td>Link/ACT</td>
<td>Green</td>
<td>On: Link is good. Flashing: Line is working properly and activity is on the line. Off: Link has failed.</td>
</tr>
<tr>
<td>LAN2 (LAN 2 is reserved for future use)</td>
<td>100</td>
<td>Green</td>
<td>On: Activity is being transmitted at 100 Mbps. Off: Activity is being transmitted at 10 Mbps.</td>
</tr>
<tr>
<td>Power</td>
<td>Power</td>
<td>Green</td>
<td>On: Indicates power is on. Off: Power is off.</td>
</tr>
<tr>
<td>Alert</td>
<td>Alert</td>
<td>Amber</td>
<td>Operational Status. Off: Tenor DX is working properly. On: One or more diagnostic tests have failed.</td>
</tr>
</tbody>
</table>
Chapter 2: Hardware Components

Back Panel

- **AC Receptacle.** Receptacle in which to plug in a power cord; the other end will plug into an AC outlet for power.
- **Power Switch.** Switch to turn power on and off.
- **Ground Screw.** An earth ground screw provided to connect to earth ground using a Ground Safety Cable (if your AC power plug only has two prongs and does not have a third, grounded prong).
- **Label.** A label that displays UL, model, and power information.
Chapter 2: Hardware Components

Cables

The cables listed in Table 2-4 are required to connect a Tenor DX to various interfaces. Contact Quintum for ordering information, if necessary.

NOTE: A crossover cable is required when connecting to a Line side (PBX) interface (when supplied by Quintum, this is a red RJ-45 cable). A straight cable is required when connecting to the trunk side (PSTN) interface (when supplied by Quintum, this is a green RJ-45 cable).

Table 2-4 Cables Supported

<table>
<thead>
<tr>
<th>Cable</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ-45 to RJ-45 Crossover Cable (this cable is red if provided by Quintum)</td>
<td>T1/E1 connection Line Side Side (PBX) interface.</td>
</tr>
<tr>
<td>RJ-45 to RJ-45 Straight Through cable (this cable is green if provided by Quintum)</td>
<td>T1/E1 connection to Trunk Side (PSTN) interface.</td>
</tr>
<tr>
<td>RJ-45 Ethernet cable (grey or white)</td>
<td>Connection to Ethernet LAN 10/100.</td>
</tr>
<tr>
<td>DB-9 Serial RS-232</td>
<td>Connection to PC’s asynchronous console port.</td>
</tr>
<tr>
<td>Detachable (IEC) AC Power Supply Cord</td>
<td>Connection to AC power jack.</td>
</tr>
</tbody>
</table>

RJ-45 Cables

RJ-45 cable connector pinouts are given in this section to help you identify the proper connector to accommodate your specific networking requirements. The RJ-45 (ISO 8877) connector is the EIA/TIA standard for Unshielded Twisted Pair (UTP) cable; the wiring color codes are UTP Standard Coloring. The pin order is shown in Figure 2-5.

Figure 2-5 RJ-45 Pin Order

Table 2-4 Cables Supported

<table>
<thead>
<tr>
<th>Cable</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ-45 to RJ-45 Crossover Cable (this cable is red if provided by Quintum)</td>
<td>T1/E1 connection Line Side Side (PBX) interface.</td>
</tr>
<tr>
<td>RJ-45 to RJ-45 Straight Through cable (this cable is green if provided by Quintum)</td>
<td>T1/E1 connection to Trunk Side (PSTN) interface.</td>
</tr>
<tr>
<td>RJ-45 Ethernet cable (grey or white)</td>
<td>Connection to Ethernet LAN 10/100.</td>
</tr>
<tr>
<td>DB-9 Serial RS-232</td>
<td>Connection to PC’s asynchronous console port.</td>
</tr>
<tr>
<td>Detachable (IEC) AC Power Supply Cord</td>
<td>Connection to AC power jack.</td>
</tr>
</tbody>
</table>

Figure 2-5 RJ-45 Pin Order

Table 2-4 Cables Supported

<table>
<thead>
<tr>
<th>Cable</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ-45 to RJ-45 Crossover Cable (this cable is red if provided by Quintum)</td>
<td>T1/E1 connection Line Side Side (PBX) interface.</td>
</tr>
<tr>
<td>RJ-45 to RJ-45 Straight Through cable (this cable is green if provided by Quintum)</td>
<td>T1/E1 connection to Trunk Side (PSTN) interface.</td>
</tr>
<tr>
<td>RJ-45 Ethernet cable (grey or white)</td>
<td>Connection to Ethernet LAN 10/100.</td>
</tr>
<tr>
<td>DB-9 Serial RS-232</td>
<td>Connection to PC’s asynchronous console port.</td>
</tr>
<tr>
<td>Detachable (IEC) AC Power Supply Cord</td>
<td>Connection to AC power jack.</td>
</tr>
</tbody>
</table>

Figure 2-5 RJ-45 Pin Order

Table 2-4 Cables Supported

<table>
<thead>
<tr>
<th>Cable</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ-45 to RJ-45 Crossover Cable (this cable is red if provided by Quintum)</td>
<td>T1/E1 connection Line Side Side (PBX) interface.</td>
</tr>
<tr>
<td>RJ-45 to RJ-45 Straight Through cable (this cable is green if provided by Quintum)</td>
<td>T1/E1 connection to Trunk Side (PSTN) interface.</td>
</tr>
<tr>
<td>RJ-45 Ethernet cable (grey or white)</td>
<td>Connection to Ethernet LAN 10/100.</td>
</tr>
<tr>
<td>DB-9 Serial RS-232</td>
<td>Connection to PC’s asynchronous console port.</td>
</tr>
<tr>
<td>Detachable (IEC) AC Power Supply Cord</td>
<td>Connection to AC power jack.</td>
</tr>
</tbody>
</table>
RJ-45 Ethernet Cable (10/100)

An RJ-45 (10/100BaseT) straight through shielded cable is used to connect Tenor DX to an Ethernet LAN. Cable pinouts are listed in Table 2-5. Color specifications are applicable to the RJ-45 cable provided.

Figure 2-6 RJ-45 (10/100BT) Connector Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Connects to Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2-5 RJ-45 (10/100BT) Connector Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Definition</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX +</td>
<td>Transmit Data</td>
<td>White w/orange</td>
</tr>
<tr>
<td>2</td>
<td>TX -</td>
<td>Transmit Data</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>RX +</td>
<td>Receive Data</td>
<td>White w/green</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td>Unused</td>
<td>Blue</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td>Unused</td>
<td>White w/blue</td>
</tr>
<tr>
<td>6</td>
<td>RX -</td>
<td>Receive Data</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td>Unused</td>
<td>White w/Brown</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td>Unused</td>
<td>Brown</td>
</tr>
</tbody>
</table>
RJ-45 to RJ-45 Straight Cable (T1/E1/PRI WAN to Trunk Side)

An RJ-45 (T1/E1) straight cable is used to connect Tenor DX T1/E1 (1-8) port to the Trunk Side (PSTN). Cable pinouts are provided below. If this cable is provided by Quintum, the color is green. The color specifications are applicable to the RJ-45 straight cable provided.

Figure 2-7 RJ-45 (T1/E1/PRI) Connector Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Connects to</th>
<th>Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2-6 RJ-45 Connector Pinouts for T1/E1/PRI

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Definition</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RX ring</td>
<td>Receive Ring</td>
<td>White w/orange</td>
</tr>
<tr>
<td>2</td>
<td>RX tip</td>
<td>Receive Tip</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>RSVD</td>
<td>Reserved</td>
<td>White w/green</td>
</tr>
<tr>
<td>4</td>
<td>TX ring</td>
<td>Transmit Ring</td>
<td>Blue</td>
</tr>
<tr>
<td>5</td>
<td>TX tip</td>
<td>Transmit Tip</td>
<td>White w/blue</td>
</tr>
<tr>
<td>6</td>
<td>N.C</td>
<td>No Connect</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>N.C.</td>
<td>No Connect</td>
<td>White w/Brown</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
<td>No Connect</td>
<td>Brown</td>
</tr>
</tbody>
</table>
RJ-45 to RJ-45 Crossover Cable (T1/E1/PRI WAN to PBX)

An RJ-45 (T1/E1) crossover cable is used to connect Tenor DX T1/E1 (1-8) port to the Line Side (PBX). Cable pinouts are provided below. If this cable is provided by Quintum, the color is red. The color specifications are applicable to the RJ-45 crossover cable provided.

Figure 2-8 RJ-45 Crossover Cable Pinouts

<table>
<thead>
<tr>
<th>Connector 1 Pin #</th>
<th>Connects to</th>
<th>Connector 2 Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-7 RJ-45 Connector Pinouts for T1/E1/PRI (1-8) port

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Definition</th>
<th>Color for Connector 1</th>
<th>Color for Connector 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RX ring</td>
<td>Receive Ring</td>
<td>White w/orange</td>
<td>Blue</td>
</tr>
<tr>
<td>2</td>
<td>RX tip</td>
<td>Receive Tip</td>
<td>Orange</td>
<td>White w/blue</td>
</tr>
<tr>
<td>3</td>
<td>RSVD</td>
<td>Reserved</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>TX ring</td>
<td>Transmit Ring</td>
<td>Blue</td>
<td>White w/orange</td>
</tr>
<tr>
<td>5</td>
<td>TX tip</td>
<td>Transmit Tip</td>
<td>White w/blue</td>
<td>Orange</td>
</tr>
<tr>
<td>6</td>
<td>N.C.</td>
<td>No Connect</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>N.C.</td>
<td>No Connect</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
<td>No Connect</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
DB-9 Serial RS-232 Cable

The Serial RS-232 9-pin cable with a DB-9 male connector (with RS-232 interface) is used to connect the Tenor DX to your PC’s asynchronous serial port. The pin order for DB-9 male and female connectors are shown in Figure 2-9 and Figure 2-10.

Figure 2-9 DB-9 Male Connector Pin Order

![DB-9 Male Connector Pin Order](image)

Figure 2-10 DB-9 Female Connector Pin Order

![DB-9 Female Connector Pin Order](image)

Figure 2-11 DB-9 Connector Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Connects to</th>
<th>Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Table 2-8 DB-9 Connector Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
<th>Description</th>
<th>Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>TXD</td>
<td>Transmit Data</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>RXD</td>
<td>Receive Data</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CD</td>
<td>Carrier Detect</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Signal Ground</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>N.C.</td>
<td>No Connect</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>N.C.</td>
<td>No Connect</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
<td>No Connect</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>N.C.</td>
<td>No Connect</td>
<td>9</td>
</tr>
</tbody>
</table>
Chapter 3: Installation

This chapter gives you installation instructions, as well as how to position the Tenor DX successfully within your network.

Specifically, the following topics are covered:

- Installation
- Connection
- Install Ground Safety Cable
- Power up the System
- Assign IP Address
Chapter 3: Installation

Installation

Before you begin the actual installation, review the pre-installation guidelines which follow and inspect the package contents.

Pre-Installation Guidelines

- Always use an anti-static wrist strap when handling the unit.
- Do not open the unit cover. Inside parts have hazardous voltages and are extremely sensitive to static. If the unit has been opened, your warranty is void.
- Do not connect equipment in wet conditions and keep away from dusty areas.
- The area must not exceed the temperature and humidity guidelines outlined in Appendix A: Technical Specifications.
- Avoid exposing the chassis to excessive vibrations.
- Mechanical loading of rack should be considered so that the rack remains stable and unlikely to tip over. Ensure no equipment is put on top of the chassis.

Inspect Package Contents

Before you install the hardware, ensure the following components are included in your shipment:

- Tenor Tenor DX and Mounting Hardware
- 1 AC Power Cable
- DB-9 RS-232 Serial Cable
- RJ-45 LAN Cable
- Correct quantity of RJ-45 cables associated with your custom configuration
- Product Guide in CD format

If a listed component is not included in your package, contact your customer service representative.
Rack Install

Locate the Tenor DX unit within the same area as your PBX, Ethernet hub, switch, router, and/or PSTN patch panel. The chassis is intended to be installed in a 19” rack.

Mounting brackets are attached to the chassis; the rack is not included with your system. Included with the chassis are the screws and clip nuts listed below. The sizes should allow installation in most racks. If your rack does not use the same size screws listed in the table, please consult the instructions you received with the rack.

Required Materials

- 19” rack (not included with system)
- #8 - 32 x 3/8 screws (qty: 2) (included with system)
- screws as required by your rack manufacturer

Install the chassis in a rack as follows:

1. Choose a position for the chassis within the rack.

WARNING: If the Tenor DX unit is the only equipment installed in the rack, ensure it is level with the rack to avoid the rack from becoming unbalanced. Mount as low as possible to avoid a high center of gravity.

2. Align the unit’s mounting brackets flush with the rack’s mounting holes (see Figure 3-1) and follow the vendor specific instructions for rack installation. The screws provided require a Phillips #2 screwdriver.

3. Ensure the chassis is secured firmly to the rack.
Chapter 3: Installation

Figure 3-1 Rack Installation (Front View)

Wall Mount

There are two mounting brackets available to mount the unit to the wall.

Pre-installation Guidelines

- Ensure the wall is level and stable.
- Do not attach the unit to a temporary wall.
- Ensure the wall mounting area is within cord distance of the power outlet.

Required Materials

- 2 wall mounting brackets (including 2 screws)
- Drill
- 3/16 drill bit
- Measuring tape or ruler
- Hammer
- Phillips head screwdriver
Attach the unit to the wall as follows:

1. Determine the wall area to mount the unit. With chalk or a soft pencil, mark the install area according to Figure 3-2.

\[\text{NOTE: Ensure the unit is level.} \]

Figure 3-2 Wall Mounting Dimensions

2. Position and attach one mounting bracket to the unit using a screw existing in the system and one screw included with the package. See Figure 3-3.

3. Position and attach the other mounting bracket using a screw existing in the system and the remaining screw in the package. See Figure 3-3.

Figure 3-3 Wall Mount Installation

4. Mount the unit to the wall using the four remaining screws included with the system.

5. Ensure the unit is firmly mounted against the wall.
Chapter 3: Installation

Connection

Connect to Line Interface - PBX

Since there are many different PBX devices and connection methods, your individual PBX will determine the connection method you use to connect to the unit. For example, your PBX may be connected using a patch panel, punch down block, wire wrapped blocks, etc. If you are not sure about installation procedures, contact the network administrator or review the documentation you received with the PBX.

Adjacent port pairs (i.e., 1/2, 3/4, etc.) are configured by default to connect to each other (power off bypass) when the unit is turned off, or when the unit is in Offline mode. This is the preferred method when connecting one of the lines to a PBX, and its adjacent pair to the PSTN. However, if you have adjacent port pairs that are connected to smaller devices (i.e., both going to PSTN) in which you do not want the two ports to be connected to each other in case of power off or offline, you should set the power off bypass = 0. Each pair of ports (1/2, 3/4, 5/6 and 7/8) have their own online/offline and power off bypass control. See the Tenor Configuration Manager online help or the Command Line Interface (CLI) guide for specific configuration information.

You may use your PBX documentation, along with other PBX materials, to determine how to connect the other end of the RJ-45 cable to your PBX. See Chapter 2: Hardware Components for the RJ-45 cable pinouts you can use to acquire another cable or adapter that may be required to connect your specific PBX to the unit. No changes are required to the PBX itself; you will need only the correct cable or adapter.

The instructions which follow tell you how to connect an RJ-45 cable (included in your package) between one of the eight network ports on the Tenor DX and a PBX. See Chapter 2: Hardware Components for a list of RJ-45 cable pinouts you can use to make a custom cable.

Figure 3-4 Connect to Line Interface

Connect to Line Interface as follows:

1. Plug one end of the crossover RJ-45 cable into one of the eight network ports on the front of the unit. (This cable from Quintum would be the red RJ-45 crossover cable.) See Chapter 2: Hardware Components for cable pinouts if you are making your own cable.

2. Connect the other end of the crossover RJ-45 cable into the appropriate port on the PBX. (If another cable or adapter is required, see Chapter 2: Hardware Components for RJ-45 crossover pinout information.)

NOTE: If you are connecting to an external CSU, ensure the Digital Interface is configured as short haul (or DSX-1); otherwise, configure the Digital Interface to DS-1 to enable the built in CSU via Command Line Interface (CLI). See Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor.
Connect to Trunk Interface - PSTN

Adjacent port pairs (i.e., 1/2, 3/4, etc.) are configured by default to connect to each other (power off bypass) when the unit is turned off, or when the unit is in Offline mode. This is the preferred method when connecting one of the lines to a PBX, and its adjacent pair to the PSTN. However, if you have adjacent port pairs that are connected to smaller devices (i.e., both going to PSTN) in which you do not want the two ports to be connected to each other in case of power off or offline, you should set the power off bypass = 0. Each pair of ports (1/2, 3/4, 5/6 and 7/8) have their own online/offline and power off bypass control. See the Tenor Configuration Manager online help or the Command Line Interface (CLI) guide for specific configuration information.

Figure 3-5 Connect to Trunk Interface

1. Plug one end of the straight through RJ-45 cable into one of the eight network ports on the front of the unit. The cable from Quintum would be the green RJ-45 cable. See Chapter 2: Hardware Components for cable pinouts if you are making your own cables, or if you wish to attach the table to a punch down block.

2. Connect the other end of the RJ-45 straight cable to the patch panel which houses your telephone lines.

⚠️ NOTE: If you are connecting to an external CSU, ensure the Digital Interface is configured as short haul (or DSX-1), otherwise, configure the Digital Interface to DS-1 to enable the built-in CSU via Command Line Interface (CLI). See Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor.

⚠️ NOTE: Connecting to the patch panel may require trained telephone personnel.
Connect to Ethernet LAN

You can use these instructions for general connection purposes only. The Ethernet hub/switch manufacturer’s documentation should provide specific instructions for connection to another device, such as the Tenor DX. Only LAN 1 is available for use; LAN 2 is reserved for future use.

Figure 3-6 Connect to Ethernet Hub/Switch

1. Plug one end of the grey or white RJ-45 Ethernet cable into the port labeled LAN 1.

2. Plug the other end of the cable into one of the Ethernet hub/switch ports. If a custom cable or adapter is required, see Chapter 2: Hardware Components for Ethernet RJ-45 10/100.
Connect to PC Console

You will need to connect the Tenor DX to your workstation’s serial port via RS-232 connection. (This connection will be used when you assign an IP address to the unit.) For the instructions below, it is assumed you are connecting to a Windows PC.

Figure 3-7 Connect to PC Com Port

1. Insert the male end of the DB-9 cable into the port labeled Console. (See Chapter 2: Hardware Components for RS-232 connector pinouts.)

2. Insert the female end of the DB-9 cable into your workstation’s serial port (see your PC documentation for more information about this port).
Install Ground Safety Cable (if required)

The Tenor DX provides an Earth Ground screw (a #6 screw). This screw provides earth ground to the unit if the AC power receptacle you are plugging into does not contain a ground prong (the Quintum supplied power cable has a three prong connector). To provide ground via the grounding screw, you will need to connect the grounding screw to a Ground Safety Cable, which can then be connected to an approved safety earth ground.

Connect the Ground Safety Cable as follows:

1. Unscrew the existing screw from the grounding hole.
2. Place the screw through the ring connector at one end of the ground safety cable.
3. Attach the screw securely to the threaded grounding hole.
4. Connect the other end of the ground safety cable to an approved electrically grounded object. Consult with a licensed electrician if you are unclear about this operation.

Figure 3-8 Install Ground Safety Cable
Power up the System

Once you have all cables connected properly, you are ready to turn the system on as follows:

1. Plug in the power cord to an AC outlet.

2. Locate the on/off switch on the back of the unit and click the switch to **On**.

The unit will power up and the LEDs will flash and turn off; the power LED will remain lit. For information about the LEDs, see *Chapter 2: Hardware Components*.

Once the unit is powered up, you are ready to assign an IP address. See the following section *Assign IP Address*.
Assign IP Address

Before you can configure a Tenor DX, you need to assign a valid IP address. When a Tenor DX is shipped to a customer, you need to assign a valid IP address for each unit. An IP address is a 32 bit (up to 12 numeric characters) address used to identify each network device in the TCP/IP network. If the unit does not have an IP address, data will not be able to be sent to or from the unit.

Communication between the Tenor and the PC is enabled via RS-232 connection and terminal emulation software. The instructions below assume you are running HyperTerminal (running Windows 95 or later) on your PC. For all other terminal emulation packages, the specific Tenor commands used to assign the IP address will be the same, but the software specific instructions will be different. Consult the applicable documentation for more information.

You can re-configure the IP address using the procedure which follows.

1. Press the Tenor DX’s power switch to On.
2. Click on Start> Programs> Accessories> Communications>HyperTerminal> Run. The Connection Description window will be displayed.
3. Enter a connection name (i.e., name for each unit such as Tenor DX New Jersey).
4. Click Ok.
5. Choose the serial port on your PC from the Connect Using drop down list box (i.e., Direct to Com 1). Click Ok. The Com1 Properties window will be displayed. See Figure 3-9.

 Figure 3-9 Port Settings Window

6. From the Bits Per Second drop down list box, choose 38400.
7. From the Data Bits drop down list box, choose 8.
8. From the Parity drop down list box, choose None.
9. From the Stop bits drop down list box, choose 1.
10. From the Flow control drop down list box, choose None.
11. Click \textbf{Ok} and a connection to the Tenor will be established. Information about the unit will scroll on the screen.

12. Enter \texttt{login} and \texttt{password}. Both are \texttt{admin} by default.

13. A message will appear on the screen “Tenor Analog does not have an Ethernet interface configured. Would you like to configure an Ethernet Interface?” (y/n).

14. Type \texttt{y}.

15. For \textit{IP Address}, enter the IP address for the Tenor unit.

16. For \textit{Subnet Mask}, enter the subnet mask. This address is used to differentiate the network portion of the IP address from the host portion of the IP address.

17. For \textit{Default Gateway}, choose whether there should be a default gateway (router) which routes packet data outside of your LAN and enter its IP address.

18. A message will appear on the screen “Tenor Digital Ethernet Interface successfully configured.” The Tenor will restart using the new Ethernet settings.

\textbf{Change IP Address}

You are able to change the IP address in which the unit is attached as follows:

\begin{itemize}
 \item \textbf{NOTE:} The instructions below assume you are running Windows 2000 or above.
 \item 1. Press the Tenor DX’s power switch to \texttt{On}.
 \item 2. Click on \texttt{Start} > \texttt{Programs} > \texttt{Accessories} > \texttt{Communications} > \texttt{HyperTerminal} > \texttt{Run}. The \textit{Connection Description} window will be displayed.
 \item 3. Enter a connection name (i.e., name for each unit such as \texttt{Tenor DX New Jersey}).
 \item 4. Click \texttt{Ok}.
 \item 5. Choose the serial port on your PC from the \textit{Connect Using} drop down list box (i.e., Direct to Com 1). Click \texttt{Ok}. The \textit{Com1 Properties} window will be displayed. See Figure 3-10.
\end{itemize}
6. From the **Bits Per Second** drop down list box, choose 38400.

7. From the **Data Bits** drop down list box, choose 8.

8. From the **Parity** drop down list box, choose **None**.

9. From the **Stop bits** drop down list box, choose 1.

10. From the **Flow control** drop down list box, choose **None**.

11. Press the **Tenor AS** power switch to On. After the bootup sequence, the login prompt will appear.

12. Enter a login name. The default login name is admin.

13. Enter a password. The default password is admin. (Once you are up and running, changing the password is a good idea for security purposes). Step through each of the following parameters and enter the correct values for your installation: IP address, Subnet Mask and Default Gateway.

14. At the **Quintum** prompt, type **ei** to reach the Ethernet prompt and then type **config** to change to the Configuration mode.

15. To set the IP address, type **set ipa** followed by the IP address.

16. To set the Subnet Mask, type **set subnetmask**, followed by the subnet mask.

17. Type **siprd** to change to the Static IP Route Directory.

18. To set the Default Gateway IP, type **change 1 g** followed by the IP address for the default gateway IP.

19. Type **submit**.

20. Type **maint** to reach the maintenance mode and then **mc**. Type **reset**. A confirmation message will ask if you want to reset the unit. Type yes to reset the unit. The reboot enables the Tenor to incorporate the new settings.
Load Software Upgrade

To upgrade the software, download the upgrade from the CD ROM you received with the unit, or download the latest software/documentation from www.quintum.com.
Chapter 4: Getting Started: *Tenor Configuration Manager/Tenor Monitor*

This chapter tells you how to get started configuring and monitoring the *Tenor DX* through the *Tenor Configuration Manager* and the *Tenor Monitor*.

- Overview
- Tenor Configuration Manager
- Tenor Monitor
Overview

The **Tenor Configuration Manager** is a user-friendly windows-based stand-alone GUI which enables you to configure a number of Quintum products, including the *Tenor DX*. The software was designed to run on any PC; you simply designate the IP address for the Tenor product (i.e., *Tenor DX*) on which you would like to configure or perform monitoring functions.

The **Tenor Configuration Manager** and **Tenor Monitor** enable you to perform configuration and monitoring tasks. For complete information, including all field definitions and extensive usage instructions, see the *Tenor Configuration Manager/Tenor Monitor User Guide* and the *Command Line Interface User Guide* (or the *Online Help* available with the software).
The **Tenor Configuration Manager** is used to configure all aspects of the Tenor DX, including system, Ethernet, CDR, signaling, circuit, and VoIP configuration. Through the **Configuration Manager**, you are able to configure all aspects of the Tenor unit.

The manager is a user-friendly GUI which enables you to configure Quintum products; you designate the IP address of the Tenor product you want to configure. A menu tree—which displays all configuration options in the system—is divided into four main areas: **System Wide Configuration**, **Ethernet Configuration**, **VoIP Configuration**, and **Circuit Configuration**.

- **System Wide Configuration.** The configuration items under **System Wide Configuration** include chassis, dial plan, and assorted server information.
- **Ethernet Configuration.** The **Ethernet Configuration** menu includes options for configuring Ethernet interface information as well as Static IP, NAT IP and Filter IP information.
- **VoIP Configuration.** The **VoIP Configuration** prompt contains the major sub-prompts for configuring the parameters which pertain to its VoIP element status, such as Gateway, Gatekeeper, Border Element, and Signaling Group.
- **Circuit Configuration.** Through the Circuit Configuration options, you are able to set auto-switch, signaling, and trunk group information.

Getting Started with Configuration

This section gives instructions for getting started with the **Tenor Configuration Manager**. For detailed information about the installation procedure, see the **Tenor Configuration Manager/Tenor Monitor User’s Guide**.

NOTE: As an alternate to configuring via **Tenor Configuration Manager**, you can configure the unit via **Command Line Interface (CLI)**. For information about the CLI, see **Chapter 5: Getting Started: Command Line Interface (CLI)** or the **Command Line Interface User Guide** you received with the unit.

NOTE: Ensure the software is installed and running.

1. Access the **Tenor Configuration Manager** icon (located in the area in which you specified during installation). For example, click on **Start > Programs >Quintum Tenor Configuration Manager > Tenor Config Manager**. The **Tenor Configuration Manager** will launch. The **Specify Tenor IP Address** window will be displayed.

2. From the **Tenor IP Address** drop down box, click on **Specify New IP Address** (if the IP address is already listed from a previous login, select that IP address and you will automatically be connected).

3. Enter the IP address of the Tenor unit in which you would like to configure.

4. Enter the Tenor Server Port (the value must match the port numbers set via CLI; the default entry is **8080**).

5. Click **Ok**. The **Confirm Login and Password** screen will be displayed.

6. Enter a user name and password (the default user name is **admin**; the default password is **admin**). Click **ok**. You are now ready to configure the Tenor unit.
Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor

Once you have connected to the Configuration Manager, you can move around and configure data. For complete information about the field definitions, valid entries, and submit information, see the VoIP Network Management Server’s User Guide or the online help system that came with the system.

Tenor Monitor

The Tenor Monitor enables you to view alarms for all Tenor units, as well as Call Event Records, and Call Detail Records. There are three main functions of the Tenor Monitor.

• **Alarm Monitor.** Through the Alarm Monitor, you are able to view alarms for a specified IP address, as well as display active alarms, alarm history, and deleted alarms. You can configure a database table for the specific unit in which you would like to monitor alarms.

• **Call Monitor.** Through the Call Monitor, you are able to view call events for each call passing through the Tenor, including call type, duration, call state, etc. The Call Monitor continuously collects active, real-time call event data and displays it on the screen. You are able to select/edit/delete a Tenor to a database table for the specific unit in which you would like to view call events.

• **Call Detail Record (CDR) Monitor.** Through the CDR Monitor, you are able to view the Call Detail Record for each call, including the call connect/disconnect times, call path, and autoswitch information.

Through the Tenor Monitor, you can view real-time data for up to three Tenors at the same time. The Tenor Monitor can collect up to 500,000 CDR/Call Event Records per day.

Getting Started with Monitoring

This section gives instructions for getting started with the Tenor Monitor. For detailed information about the installation procedure, see the Tenor Configuration Manager/Tenor Monitor User’s Guide.

NOTE:

For detailed information about installation requirements, see the Tenor Configuration Manager/Tenor Monitor’s User Guide.

1. Access the Tenor Monitor icon (located in the area in which you specified during installation. For example, click on Start > Programs > Quintum Tenor Monitor>Tenor Monitor. The Tenor Monitor will open up. The User Name and Password window will be displayed.

2. Enter a user name and password (the default user name is **admin**; the default password is **admin**). Click OK.

You are now ready to monitor a specific Tenor unit. See the Tenor Configuration Manager/Tenor Monitor User Guide for specific information about moving around the Tenor Monitor, using screens, and switching between IP addresses to view alarms, CDR, and call information.
Chapter 5: Getting Started: Command Line Interface (CLI)

This chapter tells you how to use access and use the CLI. Specifically, the following topics are included:

- CLI Description
- Access CLI
- Configuration via CLI
What is the Command Line Interface?

The Command Line Interface (CLI) is a Telnet-based (also accessible via serial port) list of menu options which enable you to configure and monitor any Tenor DX unit; you can configure features and capabilities such as numbering plans, channel usage, border element, signaling type, and routing information. In addition, you are also able to monitor system alarms and run diagnostic procedures. CLI attributes enable you to further configure CLI options; these provide additional configuration items according to the option type.

Through the CLI, there are also commands you execute to simplify the process of configuring and monitoring the Tenor DX unit. Some of these commands are globally used, others are specific to the mode in which you are working. For example, the set command, available globally from within the Configuration mode, enables you to set attributes for different options.

Options

Some configuration menu options can have multiple instances. As a result, those option types require an identifier to uniquely define a specific option type. Other options are part of the default system, such as dial plan. You can configure the dial plan and the corresponding attributes, but you cannot create a second dial plan. Default menu options cannot be deleted.

Other options are user-defined, such as Signaling Groups. These can be added or removed as necessary; you are able to assign an identifier to each option you create. For example, when creating a new ISDN signaling group, you may assign the name 5ESSPRI. From that point, you can enter ISDNSignalingGroup 5ESSPRI and you will be brought immediately to that option. As a result, you can assign relative names to your options that closely represent your actual network.

Modes

The CLI is divided into four different modes: Configuration, Maintenance, Monitoring, and Diagnostics. You can move from one mode to another according to the function you want to perform. See below for a definition of each mode.

Configuration. The Configuration mode enables you to configure all functions in the Tenor DX. Through this mode, you can access many configuration options and enter the desired information.

Maintenance. The Maintenance mode provides utilities for maintaining the system. Through this mode, for example, you can reset the system, if necessary.

Diagnostic. The Diagnostics mode provides a set of utilities to perform diagnostic and testing procedures. For example, through this mode you are able to ping other units.

Monitor. The Monitor mode provides a set of utilities to monitor the network and all system components, including chassis software components. In the Monitor mode, you are able to view alarms generated within the system, as well as view the call status.

Navigation

There are several options for navigating through the system. You can either type in the desired option at the prompt, or use global commands, such as the surf (< or > plus Enter key) to move between the menu options.
User Login IDs

There are two types of user logins: user and admin. The admin level enables you to view and change information. The user level enables you to view the information but not configure via CLI.

Access CLI

You can access the CLI through a Telnet session, a terminal-like access to any Tenor DX unit. If your PC is directly connected to the Tenor DX unit, you can configure the unit directly through the serial port using HyperTerminal. Both methods are described below.

NOTE: Alternatively, you may want to use other telnet clients, such as the Linux telnet client or free programs like Putty. If you choose to do so, you may have to make minor setting changes in the Telnet client in order to make it function correctly.

Telnet Connection

Once the Tenor DX has been initially configured with an IP address network and is connected, the easiest way to connect to the Tenor DX and use the CLI is through a standard Telnet session from any PC on your IP network. Connect to a Tenor DX unit via Telnet as follows:

For Windows 95/Windows 98:

1. Click on Start > Run. The Run dialog box will be displayed.
2. Type telnet and click on Ok.
3. Click on Connect > Remote System.
4. In the Host Name field type, enter the IP address assigned to your Tenor DX.
5. Click on Connect.

A connection to the Tenor DX unit will be established.

For Windows 2000 and above:

1. Click on Start > Run.
2. The Open dialog box will be displayed. Type telnet and click on Ok. (Or type telnet followed by the IP address and you will connect.)
3. At the telnet prompt, type open (followed by the IP address for the unit to which you want to connect.)

A connection to the Tenor DX unit will be established.
Serial Port Connection

When the Tenor DX is first shipped to you, you must connect to the unit using this method to assign an IP address. Once this is assigned, you can use the CLI to reach the serial port of the Tenor. A null-modem cable must be used to connect to the CLI using this port, if you are directly connected to the unit. To connect to the Tenor DX serial port, locate a workstation (PC) close to the Tenor DX unit. Connect as follows:

1. Insert one end of the DB-9 serial null modem cable into the Tenor DX’s serial port.

2. Insert the other end of the DB-9 serial cable into your workstation’s Com/serial port.

Once the cable is connected and the Tenor DX is powered on, open a HyperTerminal session (or other terminal emulation program) as follows:

3. Click Start > Programs > Accessories > Communications > HyperTerminal. The HyperTerminal window will be displayed.

4. Click on Hypertrm.

5. Enter a connection description (i.e., name for each unit such as Tenor DX 1).

6. Click Ok.

7. Choose a connection port (on your PC) from the Connect Using drop down list box (i.e., Direct to Com 1). Click Ok. The Com 1 properties window will be displayed.

8. From the Bit Per Second drop down list box, choose 38400.

9. From the Data Bits drop down list box, choose 8.

10. From the Parity drop down list box, choose None.

11. From the Stop bits drop down list box, choose 1.

12. From the Flow Control drop down list box, choose None.

13. Click on Call>Call. A connection to the Tenor DX will be established.

14. Enter a login name. The default login name is admin.

15. Enter a password. The default password is admin. (To change this password later, see Chapter 8: Diagnostics/Maintenance.) Questions about the unit will scroll on the screen.

NOTE: Steps 16-18 are used for first time assignment of IP address.

16. For IP address, enter the IP address for the Tenor DX unit.

17. For Subnet Mask for LAN prompt, enter the subnet mask. This address is used to differentiate the network portion of the IP address from the host portion of the IP address.

18. For Default Gateway prompt, enter the IP address for the default gateway (router) which routes a packet data outside of your LAN.

The Tenor DX will reboot automatically.
Configuration via CLI

Once you are connected to the Command Line Interface, you can configure the system, as well as perform diagnostics and monitor system information. For specific information, see the Online Help you received with the CD.
Chapter 6: Call Detail Recording

This chapter tells you how to display and understand the Call Detail Recording (CDR) feature. Examples are included later.

Specifically, the following topics are included.

- Overview
- CDR Description
- Establish Connection
- CDR Output
Chapter 6: Call Detail Recording

Overview

There are two ways to view CDRs for the Tenor DX unit: through the Command Line Interface (CLI) or through Tenor Monitor.

The information for accessing CDRs via CLI is detailed in this chapter: see the Tenor Configuration Manager/ Tenor Monitor User’s Guide for information about viewing alarms via Tenor Monitor.
What is a CDR?

A Call Detail Record (CDR) is a string of data which contains call information such as call date and time, call length, calling party, and called party. Through the Call Detail Recording (CDR) feature, the Tenor DX unit is able to generate a CDR at the completion of each call. CDRs are collected from multiple Tenor DX units simultaneously and continuously.

A CDR file can be created each day to collect CDRs from each Tenor DX that connects to the server. From this information you can capture billing type data which can be used by separate software components to create billing reports, view call records, and generate daily/weekly/monthly statistics reports.

The last 9600 CDRs generated are stored by the Tenor DX unit in a circular buffer (this means that any number of CDRs over 9600 will overwrite the existing CDRs). We advise that you set up a PC or workstation to act as a CDR server responsible for receiving the CDRs as they are generated (up to four ports can be set up to collect CDRs from the Tenor DX unit). The server will be responsible for capturing CDRs via TCP/IP, processing/storing them in permanent memory, and producing billing records. Any CDRs not collected from the Tenor DX unit will be lost if the unit is powered down.

The CDR software and Billing software mentioned is 3rd party software, and is not supported by Quintum.
Establish connection between Tenor DX and CDR Server

In order to capture CDRs, a connection between the Tenor DX unit and the CDR server must be established. A Tenor DX can be configured to connect up to two CDR servers via port 9002, 9003, 9004, and 9005. Based on configuration, the Tenor DX unit can either establish a TCP/IP session with one or all of these CDR servers. A flow diagram (Figure 6-1) illustrates the general transfer of information.

Figure 6-1 Flow of CDR Information

Before attempting to collect CDRs, you should configure the desired information. You can assign a CDR server IP address, CDR server port number, CDR server password, and CDR format information using the following CLI commands: `cdrserverip`, `cdrservport`, `cdrpassword`, and `cdrformat`.

- **CDRServerIPAddr**: IP address of the CDR server. (Used when the Tenor DX unit established connection with the CDR server.)
- **CDRServerPort**: The application port numbers used by the CDRServer(s). (Used when the Tenor DX establishes connection with CDR server.)
- **CDRPassWord**: Password to be used by the CDR server(s).
- **CDRFormat**: This configuration parameter command is used to choose which of the possible Call Data Record output formats you would like to send to your CDR Server: Standard, Standard with session ID functionality, Extended, Extended with session ID functionality, or Extended with Incoming Slot/Device information. Possible entries are 0 (standard format), 1 (extended format), 3 (extended format), 4 (extended format), 100 (same as selection 0 with session ID functionality), 101 (same as selection 1 with session ID functionality), 103 (same as selection 3 with session ID functionality), 104 (same as selection 4 with session ID functionality).
Configure Tenor DX for connection to CDR Server

NOTE: The CDR Server software is a Windows-based .exe file available on the CD you received with your system; this software is not supported by Quintum.

The instructions below are performed via Command Line Interface (CLI). See the Command Line Interface (CLI) user guide for specific information.

1. Through CLI, access the Configuration prompt.
2. Access the config-CDRServer-1# prompt (the number will change according to the desired server).
3. Type set CDRServerIP followed by the IP address of the CDR server and press Enter.
4. Type set CDRServerPort followed by the desired port number and press Enter. The default port is 9002.
5. Type set CDRPassWord followed by the desired password and press Enter. The password is an alphanumeric string.
6. Type set CDRFormat followed by the desired format (0, 1, 3, 4, 100, 101, 103 or 104) for displaying CDRs. See previous section for definitions.

Once you configure this information, you will be able to capture CDR reports through the CDR server and the Tenor DX unit, it will be able to establish a TCP/IP session with the server on its own.

Setup CDR Server and assign password

Before the CDR server can collect CDRs, you must install the cdrserver.cfg file as follows:

NOTE: The software is a Windows-based .exe file available on the CD you received with your system; this software is not supported by Quintum.

1. Create a directory in which to install the cdrserver.cfg file, such as c:\cdr.
2. Copy the cdrserver.cfg file and install it into the directory you created in step 1.
3. Copy the cdrsrv.exe file and install it into the directory you created in step 1.
4. Double-click on the cdrserver.exe file. The CDR files will be generated and saved to the directory in which you are working. File names are listed as the data/gateway from which the file was created.

Change CDR Password

Change the CDRserver password, if desired, as follows:

1. From the directory in which you are working, right click on the cdrserver.cfg file. At the Open with option, choose Notebook.
2. Scroll down to the line stating cdr_password. Next to that line, enter the password. Valid entry: up to 30 characters.
Chapter 6: Call Detail Recording

Tenor DX Establishes Connection with CDR Server

To capture CDR reports via CDR server (i.e., a PC or workstation you use to capture CDR data) you must first configure the IP address and port number of the CDR server in the Tenor DX unit. Once these are configured, the Tenor DX unit will be able to establish a TCP/IP session with the server on its own.

CDR Server Establishes Connection with Tenor DX

If no IP address/port number is configured, the CDR server has to initiate the session. The Tenor DX unit uses TCP port numbers 9002, 9003, 9004, and 9005 on its side for the CDR sessions. The CDRServerport must still be configured to either 9002, 9003, 9004, or 9005 (see the Command Line Interface user guide for specific information).

Whether the Tenor DX unit establishes the connection with the CDR server or the CDR server attempts to establish the connection, there is a limit of 5 attempts to enter the correct password before the TCP session is terminated (to configure a password, see the CLI command `cdrpassword` in the previous section).

After the CDR server successfully logs into the CDR port of the Tenor DX unit, the CDR server will be provided with the IP address and unit name of the Tenor DX. The CDR server will then supply the sequence number of the last CDR that it has received from the Tenor DX unit. If the last CDR number is unknown, the server should send 0 for the sequence number. After this exchange, the Tenor DX will start delivering new CDRs to the server.
The following is an example of a CDR output. Each field in a CDR string is separated by a comma (any blank fields are designated by a comma). See below for field definitions.

There are four CDR format types:

- 0 (Standard CDR output)
- 1 (Extended CDR output)
- 3 (Extended Tenor DX output and CDR output)
- 4 (Extended Tenor DX output and CDR output)
- 100 (Standard CDR output same as selection 0 output plus session ID)
- 101 (Extended CDR output same as selection 1 output plus session ID)
- 103 (Standard CDR output same as selection 3 output plus session ID)
- 104 (Extended CDR output same as selection 4 output plus session ID)

Sample Record for Standard and Extended CDR Format 0, 1, 100, 101

Record 1 Sample: (includes fields for both Standard and Extended Formats)

1,17325551212,15,20000207062812,21060207062815,
2000020706283030,16,208.226.140.57,192.168.10.64,4,1,1,1,1,1,,0,0,1415551000,12345678901234,98
76543210,0123456789

Record 1 Field Definitions – Standard Formats 0 and 100

1 (Call ID), 17325551212 (Called Number), 15 (Duration), 20000207062812 (Call Initiation Time),
20000207062815 (Call Connected Time), 2000020706283030 (Call Disconnected Time), 16 (Cause Code),
208.226.140.57 (Local IP Address), 192.168.10.64 (Remote IP Address), 4 (Origination Trunk ID), 1 (Call Type), 1 (Call Number Type), 1 (Incoming Line), 1 (Incoming Channel), 1 (Outgoing Line), 1 (Outgoing Channel), blank AutoSwitch Time, blank (AutoSwitch Duration), 0 (Bad IP Quality Events), 0 (AutoSwitch Flag)

Record 1 Field Definitions – Extended Formats 1 and 101

The extended format includes all fields used in the standard format plus the following fields:

1415551000 (Calling Party Number), 12345678901234 (PIN Code), 9876543210 (Remote Call ID #),
0123456789 (Local Call ID #)

Definitions for each field appear below.

Call ID: Sequence number. This is a unique number assigned to identify an individual call (i.e., 1, 2, 3,…). The sequence number starts from 1 and wraps around at 4,294,967,295. When a Tenor DX unit resets, the sequence number starts from 1 again. If the system has a problem and loses connectivity, the CDR server can send the Tenor DX unit the last Call ID that is received. The Tenor DX unit will reply with all records that contain a Call ID which is greater than the one last received.
Called #: The number called. This will be in international format except for a pass-through call going from PBX to PSTN or call going from PSTN to PBX.

Duration: Call duration. This value is in seconds, the value will be 0 if never connected.

Call Initiation Time: The date and time the call initiated. The time will be the local time configured on the Tenor DX unit. The entry will be in the following format: yyyyMMddhhmmss where yyyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds).

Call Connected Time: The date and time the call was actually connected. The time will be the local time configured on the Tenor DX unit. The entry will be in the following format: yyyyMMddhhmmss where yyyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds). This field will be blank if the call never connected.

Call Disconnected Time: The date and time the call disconnected. The time will be the local time configured on the Tenor DX unit. The entry will be in the following format: yyyyMMddhhmmss where yyyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds).

Cause Code: The Q.931 cause value assigned if the call is not connected. Possible common entries are listed below. This field will be blank if the call was connected.

<table>
<thead>
<tr>
<th>Cause Code</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Normal Call Clearing. The cause indicates that the call is being cleared because one of the users has requested that the call be cleared.</td>
</tr>
<tr>
<td>17</td>
<td>User Busy. The called system acknowledges the connection request but is unable to accept the call because all B channels are in use.</td>
</tr>
<tr>
<td>18</td>
<td>No User Responding. This cause is used when a user does not respond to a call establishment message with either an alerting or connect indication within the prescribed period of time allocated (in Q.931 by the expiry of either timer T303 or T310).</td>
</tr>
<tr>
<td>28</td>
<td>Invalid Number Format (Address Incomplete). The cause indicates that the called user cannot be reached because the called party number is not a valid format or is not complete.</td>
</tr>
<tr>
<td>31</td>
<td>Normal, Unspecified. This cause is used to report a normal event only when no other cause in the normal class applies.</td>
</tr>
<tr>
<td>34</td>
<td>No Circuit/Channel Available. The connection cannot be established because no appropriate channel is available to take the call.</td>
</tr>
<tr>
<td>47</td>
<td>Resource Unavailable, Unspecified. This cause is used to report a resource unavailable event only when no other cause applies.</td>
</tr>
</tbody>
</table>

Local IP Address: The IP address for the Tenor DX unit originating the CDR. The entry will be in the following format: xxx.xxx.xxx.xxx.
Remote IP Address: IP address for the remote destination Tenor DX. This will be generated only if the call is VoIP; if the call is circuit based, this field will be blank. The entry will be in the following format: xxx.xxx.xxx.xxx.

Origination Trunk ID: Identifies the origination trunk ID of the line that initiated the call. This field will be blank if no trunk ID is configured. The trunk ID is often configured with an account code.

Call Type: The type of call. Valid entry: 1 = voice, 2 = fax, 3 = modem, 4 = data.

Call Number Type: The called numbering plan used for the call per Q.931. Possible common entries are as follows: 1 = Public/E.164, 9 = Private.

Incoming Line: If the call is incoming, this field identifies which line the call came in on. Valid entry: 1 = PBX, 2 = PSTN. This field will be empty if the call is an incoming VoIP call.

Incoming Channel: If the call is incoming, this field identifies which channel the call came in on. Valid entry: 1-31. This field will be empty if the call is an incoming VoIP call.

Outgoing Line: If the call is outgoing, this field identifies which line the call is going out on. Valid entry: 1 = PBX, 2 = PSTN. This field will be empty if the call is an outgoing VoIP call.

Outgoing Channel: If the call is outgoing, this field identifies which channel the call went out on. Valid entry: 1-31. This field will be empty if the call is an outgoing VoIP call.

Autoswitch Time: This is the date and time the autoswitched occurred (when the call is switched from VoIP to circuit). The entry will be in the following format: yyyyymmddhhmmss where yyyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds). If an autoswitch did not occur, this field will be blank.

AutoSwitch Duration: The number of seconds that the autoswitch call was active. Valid entry: xx.

Bad IP Quality Events: The number of bad quality events that occur during a VoIP call. This number determines the overall quality of the call.

Autoswitch Flag. The terminating side of the autoswitch call initially terminates to the internal autoswitch agent before the call is actually autoswitched. This termination generates an extra CDR in addition to the original call that is autoswitched. This field identifies a call that is terminated to the autoswitch agent, 0 = normal call, 1 = termination to the autoswitch agent.

The following are CDR fields used in the extended format (1 or 101) only.

Calling Party Number. The number called from. The format will be delivered in whatever format the PSTN or PBX delivers to the Tenor DX.

PIN Code. PIN code entered. 14 digits maximum. This field will be blank if a PIN code is not configured.

Remote Call ID #. Unique identification number, generated by the remote-side Tenor DX, for call record matching purposes. Only generated for IP calls. For a given IP call, Local Call ID on one Tenor should match the Remote Call ID of the other.

Local Call ID #. Unique identification number, generated by the local-side Tenor DX, for call record matching purposes. Generated for all IP calls. For a given IP call, the Local Call ID on one Tenor should match the Remote Call ID of the other.
Sample Record for Extended Tenor DX CDR Format 3, 4, 103, 104:

Record 1 Sample: (includes fields for formats 3 and 103)

1,17325551212,15,20000207062812,21060207062815,2000020706283030,16,208.226.140.57,192.168.10.64,4,1,1,2,0,1,1,2,0,1,1,,0,0,1415551000,12345678901234,9876543210,0123456789,12138765432

Record 1 Field Definitions - Tenor DX Extended Formats (3 and 103)

1 (Call ID), 17325551212 (Called Number), 15 (Duration), 20000207062812 (Call Initiation Time), 20000207062815 (Call Connected Time), 2000020706283030 (Call Disconnected Time), 16 (Cause Code), 208.226.140.57 (Local IP Address), 192.168.10.64 (Remote IP Address), 4 (Origination Trunk ID), 1 (Call Type), 1 (Call Number Type), 2 (Incoming Slot), 0 (Incoming Device), 1 (Incoming Digital Interface) 1 (Incoming Channel), 2 (Outgoing Slot), 0 (Outgoing Device), 1 Outgoing Digital Interface), 1 (Outgoing Channel), blank (AutoSwitch Time), blank (AutoSwitch Duration), 0 (Bad IP Quality Events), 0 (AutoSwitch Flag), 1415551000 (Calling Party Number), 12345678901234 (PIN Code), 0123456789 (Local Call ID #), 9876543210 (Remote Call ID #)

The 4 and 104 extended format includes all fields used in the 3 and 103 extended format plus the following field:

12138765432 (Incoming/Outgoing IP DN).

Definitions for each field appears below.

Call ID: Sequence number. This is a unique number assigned to identify an individual call (i.e., 1, 2, 3,...). The sequence number starts from 1 and wraps around at 4,294,967,295. When a Tenor unit resets, the sequence number starts from 1 again. If the system has a problem and loses connectivity, the CDR server can send the Tenor DX unit the last Call ID that it received. The Tenor DX unit will reply with all records that contain a Call ID which is greater than the one last received.

Called #: The number called. This will be in international format except for a pass-through call going from PBX to PSTN or a call going from PSTN to PBX.

Duration: Call duration. This value is in seconds, the value will be 0 if never connected.

Call Initiation Time: The date and time the call initiated. The time will be the local time configured on the Tenor DX unit. The entry will be in the following format: yyyymmdhhmmss where yyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds).

Call Connected Time: The date and time the call was actually connected. The time will be the local time configured on the Tenor DX unit. The entry will be in the following format: yyyymmdhhmmss where yyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds). This field will be blank if the call never connected.

Call Disconnected Time: The date and time the call disconnected. The time will be the local time configured on the Tenor DX unit. The entry will be in the following format: yyyymmdhhmmss where yyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds).
Disconnect Cause Code: The Q.931 cause value assigned if the call is not connected. Possible common entries are listed below. This field will be blank if the call was connected.

<table>
<thead>
<tr>
<th>Cause Code</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Normal Call Clearing. The cause indicates that the call is being cleared because one of the users has requested that the call be cleared.</td>
</tr>
<tr>
<td>17</td>
<td>User Busy. The called system acknowledges the connection request but is unable to accept the call because all B channels are in use.</td>
</tr>
<tr>
<td>18</td>
<td>No User Responding. This code is used when a user does not respond to a call establishment message with either an alerting or connect indication within the prescribed period of time allocated (in Q.931 by the expiry of either timer T303 or T310).</td>
</tr>
<tr>
<td>28</td>
<td>Invalid Number Format (Address Incomplete). The cause indicates that the called user cannot be reached because the called party number is not a valid format or is not complete.</td>
</tr>
<tr>
<td>31</td>
<td>Normal, Unspecified. This code is used to report a normal event only when no other cause in the normal class applies.</td>
</tr>
<tr>
<td>34</td>
<td>No Circuit/Channel Available. The connection cannot be established because no appropriate channel is available to take the call.</td>
</tr>
<tr>
<td>47</td>
<td>Resource Unavailable, Unspecified. This code is used to report a resource unavailable event only when no other code applies.</td>
</tr>
</tbody>
</table>

Local IP Address: The IP address for the Tenor DX unit originating the CDR. The entry will be in the following format: xxx.xxx.xxx.xxx.

Remote IP Address: IP address for the remote destination Tenor DX. This will be generated only if the call is VoIP; if the call is circuit-based, this field will be blank.

Origination Trunk ID: Identifies the origination trunk ID of the line that initiated the call. This field will be blank if no trunk ID is configured. The trunk ID is often configured with an account code.

Call Type: The type of call. Valid entry: 1 = voice, 2 = fax, 3 = modem, 4 = data.

Call Number Type: The called numbering plan used for the call per Q.931. Possible common entries are as follows: 1 = Public/E.164, 9 = Private.

Incoming Slot: The slot number to which a call enters. This entry is fixed at 2.

Incoming Device: If the call is incoming, this field identifies which Digital Interface the call came in on. This entry is fixed at 0.

Incoming Digital Interface: If the call is incoming, this field identifies which device interface the call came in on. Valid entry: 1 = PBX, 2 = PSTN. This field will be empty if the call is an incoming VoIP call.

Incoming Channel: If the call is incoming, this field identifies which channel the call came in on. Valid entry: 1-31. This field will be empty if the call is an incoming VoIP call.
Outgoing Slot: If the call is outgoing, this field identifies the slot the call is going out on. This entry is fixed at 2.

Outgoing Device. If the call is outgoing, this field identifies the Device the call is going out on. This field is fixed at 0.

Outgoing Digital Interface. If the call is outgoing, this field identifies which Digital Interface the call is going out on. Valid entry: 1 = PBX, 2 = PSTN. This field will be empty if the call is an outgoing VoIP call.

Outgoing Channel. If the call is outgoing, this field identifies which channel the call went out on. Valid entry: 1-31. This field will be empty if the call is an outgoing VoIP call.

Autoswitch Time: This is the date and time the autoswitched occurred (when the call is switched from VoIP to circuit). The entry will be in the following format: yyyyymmddhhmmss where yyyy (4 digits for year), mm (2 digits for month), dd (2 digits for day), hh (2 digits for hour), mm (2 digits for minutes), ss (2 digits for seconds). If an autoswitch did not occur, this field will be blank.

AutoSwitch Duration: The number of seconds that the autoswitch call was active. Valid entry: xx.

Bad IP Quality Events: The number of bad quality events that occur during a VoIP call. This number determines the overall quality of the call.

Autoswitch Flag. The terminating side of the autoswitch call initially terminates to the internal autoswitch agent before the call is actually autoswitched. This termination generates an extra CDR in addition to the original call that is autoswitched. This field identifies a call that is terminated to the autoswitch agent, 0 = normal call, 1 = termination to the autoswitch agent.

Calling Party Number. The number called from. The format will be delivered in whatever format the PSTN or PBX delivers to the Tenor DX.

PIN Code. PIN code entered. 14 digits maximum. This field will be blank if a PIN code is not configured.

Local Call ID #. Unique identification number, generated by the local-side Tenor DX, for call record matching purposes. Generated only for IP calls.

Remote Call ID #. Unique identification number, generated by the remote-side Tenor side Tenor DX, for call record matching purposes. Only generated for IP calls.

The following is a CDR field used in the extended format 4 and 104:

Incoming/Outgoing IP DN. If this is an incoming IP call, the number displayed will be the number as received from the other endpoint. If this number is an Outgoing IP call, the number displayed will be the DN as it was sent out over IP (Outgoing number plus prepended digits).
Chapter 7: System Alarms

This chapter tells you how to use the Alarm Manager to view and understand alarms generated by the system.

Specifically, the following topics are included:

- Overview
- Monitor Alarms
- View Alarms
Overview

There are two ways to view alarms for the Tenor DX unit: through the Command Line Interface (CLI) or through Tenor Monitor.

The information for accessing alarms via CLI is detailed in this chapter: see the Tenor Configuration Manager/Tenor Monitor User's Guide for information about viewing alarms via Tenor Monitor.

Monitor Alarms

Alarms are brief text messages that appear on your workstation when the Tenor DX unit encounters a problem, such as a failed interface, disconnected call, etc. You can reach the Alarm Manager through the Command Line Interface (CLI) alarm monitoring system.

How to Read Alarms

The Alarm Manager reports alarms according to criteria such as the alarm’s severity level, line number the alarm occurred on, channel number, etc. There are two alarm types displayed: Active Alarms and Alarm History. An Active Alarm list displays all the alarms still active on the system; these alarms have not been cleared or deleted. An Alarm History is a list of the last 100 alarms stored in the system since the last time you performed a delete operation.

Definitions for generated alarm fields appear in Table 7-1.

Table 7-1 Alarm Fields and Definitions

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
<th>Valid Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP #</td>
<td>The unit’s IP address (32 bit address).</td>
<td>Example: 192.168.1.34.</td>
</tr>
<tr>
<td>Sequence #</td>
<td>Internal number used to identify alarms.</td>
<td>01, 02, 03, etc.</td>
</tr>
<tr>
<td>Type (displays only if you generate an Alarm History)</td>
<td>The type of alarm generated.</td>
<td>ALR = Alarm. This indicates an active alarm. CLR= Clear. This indicates an alarm that has been cleared from the system. RPT= Report. This indicates that the alarm has been generated for a report. This entry is for internal use only; if you see an alarm that is causing problems, contact customer service.</td>
</tr>
</tbody>
</table>
Field Definition Valid Entry

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
<th>Valid Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>Level or alarm severity.</td>
<td>1 = Critical (complete system is affected). 2 = Major (major problem is detected). 3 = Minor (minor problem is detected). 4 = Info (Information about a minor problem).</td>
</tr>
<tr>
<td>Description</td>
<td>A text description of the alarm; see Table 7-2 for detailed description.</td>
<td>Varies.</td>
</tr>
<tr>
<td>Slot #</td>
<td>Defines which slot the alarm occurred on.</td>
<td>Slot 1 or 2. Slot 1 refers to the system controller functions; slot 2 refers to DSP functions.</td>
</tr>
<tr>
<td>Device #</td>
<td>Defines which device the alarm occurred on.</td>
<td>Always device 0.</td>
</tr>
<tr>
<td>Digital Interface</td>
<td>Defines which interface (line) the alarm occurred on.</td>
<td>Line 1 through 8.</td>
</tr>
<tr>
<td>Channel #</td>
<td>Specifies which channel the alarm occurred on.</td>
<td>Channels 1-24 (for T1) or 1-31 (for E1).</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Date/time the event occurred on.</td>
<td>Day of week: name of day. Month: Jan, Feb, March, etc. Day of month: 1 or 2 digits. Time: 6 digits (hour minutes seconds based on a 24-hour clock). Year: 4 digits.</td>
</tr>
</tbody>
</table>
Valid Alarms

The following is a list of all alarm descriptions (text that appears in the Alarm Description field) for all possible alarms the system can generate. In the generated alarm list, the alarm description appears as part of the Description field.

Table 7-2 List of Valid Alarms

<table>
<thead>
<tr>
<th>Severity (appears as part of severity field)</th>
<th>Alarm Description (text appears in desc field)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>Loss of Framing (Red Alarm)</td>
<td>Signal is not being transmitted; there is no layer 1 synchronization.</td>
</tr>
<tr>
<td>Critical</td>
<td>Remote Alarm indication (Yellow Alarm)</td>
<td>Tenor DX is receiving a yellow alarm signal from the network.</td>
</tr>
<tr>
<td>Critical</td>
<td>Loss of signal</td>
<td>A loss of signal (32 consecutive zeros) at least once during a 1 second period.</td>
</tr>
<tr>
<td>Critical</td>
<td>AIS Reception (Blue Alarm)</td>
<td>Alarm Indication Signal. An all ones condition used to alert the Tenor DX that its incoming signal (or frame) has been lost.</td>
</tr>
<tr>
<td>Critical</td>
<td>Layer 2 Down</td>
<td>Indicates that Layer 2 protocol is down.</td>
</tr>
<tr>
<td>Critical</td>
<td>Ethernet Disconnected</td>
<td>Ethernet cable has been disconnected from the System Controller or CPU Card, or Ethernet connectivity has been lost. No new VoIP calls will be made and existing PSTN calls will be switched to the PSTN.</td>
</tr>
<tr>
<td>Critical</td>
<td>Call Handler not registered with Gatekeeper</td>
<td>The Call Handler process cannot be registered with the Gatekeeper.</td>
</tr>
<tr>
<td>Critical</td>
<td>Critical Software Error</td>
<td>A software error has occurred that affects the operability of the complete system.</td>
</tr>
<tr>
<td>Critical</td>
<td>Tenor DX Chassis reset</td>
<td>The chassis has reset.</td>
</tr>
<tr>
<td>Critical</td>
<td>Primary Digital Interface Clock Loss</td>
<td>Clock source has been lost for T1 lines. The unit will automatically switch to the secondary digital interface clock source.</td>
</tr>
<tr>
<td>Critical</td>
<td>Secondary Digital Interface Clock Loss</td>
<td>All clock sources have been lost, both primary and secondary. Check the T1 lines for the possible cause.</td>
</tr>
<tr>
<td>Critical</td>
<td>Configuration Data Missing</td>
<td>Configuration via CLI is missing. Check the configuration data and add the necessary information.</td>
</tr>
<tr>
<td>Severity (appears as part of severity field)</td>
<td>Alarm Description (text appears in desc field)</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Critical</td>
<td>IVR Configuration Missing</td>
<td>Appears if an attempt to make an IVR call has been made when a valid IP address is not configured. Occurs if an IVR call has been passed through accidentally, without a real intention to use IVR for subsequent calls, while both of the servers were disabled. In order to clear the alarm, a user will have to change one of the IP addresses to some value, and then disable it again.</td>
</tr>
<tr>
<td>Critical</td>
<td>RADIUS Configuration Missing</td>
<td>Appears when a RADIUS request is made and one or more required configuration parameters are missing. This alarm is cleared when the required RADIUS parameters are configured via CLI.</td>
</tr>
<tr>
<td>Critical</td>
<td>RADIUS Server Not Responding</td>
<td>Appears when none of the configured RADIUS servers respond. This alarm is cleared when any of the RADIUS servers respond or the RADIUS server is disabled via CLI.</td>
</tr>
<tr>
<td>Major</td>
<td>Major Software Error</td>
<td>A software error has occurred that affects system signaling, interfaces, or other major operation.</td>
</tr>
<tr>
<td>Major</td>
<td>File Missing in the File Server</td>
<td>This alarm will be reported to the system when a particular voice prompt file is not found in the IVR Prompt Server. This alarm applies only to the system with enabled IVR functionality.</td>
</tr>
<tr>
<td>Major</td>
<td>Switch to other RADIUS server</td>
<td>Appears when the current RADIUS server stops responding after three consecutive calls end in timeouts and another RADIUS server is configured, the Tenor will then switch to the next RADIUS server.</td>
</tr>
<tr>
<td>Minor</td>
<td>Call Event(s) Lost</td>
<td>A call has failed.</td>
</tr>
<tr>
<td>Minor</td>
<td>Missing or Incorrect Profile</td>
<td>The configuration profile has caused a problem.</td>
</tr>
<tr>
<td>Minor</td>
<td>Minor Software Error</td>
<td>A software error has occurred but will not affect the operation of the complete system.</td>
</tr>
<tr>
<td>Minor</td>
<td>No response to seizure</td>
<td>There has been a problem with the T1 line.</td>
</tr>
<tr>
<td>Minor</td>
<td>Remote end did not back off in a glare situation</td>
<td>An incoming and outgoing call went through at the same time, and the remote end call did not back off.</td>
</tr>
<tr>
<td>Minor</td>
<td>Unit resource constrained</td>
<td>A shared resource in the unit loads the system.</td>
</tr>
<tr>
<td>Severity (appears as part of severity field)</td>
<td>Alarm Description (text appears in desc field)</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Minor</td>
<td>Hardware component failed</td>
<td>A hardware component has failed. Check all components, hardware connections, etc.</td>
</tr>
<tr>
<td>Minor</td>
<td>Log RADIUS server error</td>
<td>Displayed when the RADIUS server fails to send required data or the data sent by the RADIUS server has improper values. Incorrect information may contain the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIUS Server: Credit amount (-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIUS Server: Credit minus amount</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIUS Server: Not supported currency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIUS Server: Credit time (-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIUS Server: Credit time < 6 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIUS Server: Invalid error code</td>
</tr>
<tr>
<td>Informational</td>
<td>Gatekeeper status</td>
<td>Reports the status of the Gatekeeper.</td>
</tr>
<tr>
<td>Informational</td>
<td>Miscellaneous information</td>
<td>Miscellaneous information about the unit is reported. The contents of this alarm will vary.</td>
</tr>
<tr>
<td>Informational</td>
<td>Info Software Error</td>
<td>Indicates information about miscellaneous software error. This does not affect system operation.</td>
</tr>
<tr>
<td>Informational</td>
<td>Glare occurred</td>
<td>An incoming and outgoing call went through at the same time, and the remote end call did not back off, but the situation was corrected.</td>
</tr>
</tbody>
</table>
View Alarms

The Command Line Interface (CLI) enables you to view alarms through the Monitor mode. You can view active alarms, as well as view an alarm history list.

You are now ready to view active alarms and an alarm history, or both. See the sections which follow:

Display all Alarms

You are able to display both active alarms and an alarm history as follows:

1. Through CLI, access the Monitor prompt.
2. Type `alarm`. Both active alarms and the alarm history will be displayed. See section How to Read Alarms for field definitions.

\[\text{Figure 7-1 Alarm sample} \]

\[
\begin{array}{ccccccccc}
\text{IP\#} & \text{Sequence\#} & \text{Type}\# & \text{Severity}\# & \text{Desc}\# & \text{Slot}\# & \text{Device}\# & \text{Digital Interface}\# & \text{Channel}\# & \text{Date/Time} \\
\end{array}
\]

Display Active Alarms

1. Through CLI, access the Monitor prompt.
2. Type `alarm a`. The active alarms will be listed. See section How to Read Alarms for field definitions. If you enter `alarm` without a command following it, both active alarms and the alarm history will be displayed.

\[\text{Figure 7-2 Active Alarm Sample} \]

\[
\begin{array}{ccccccccc}
\text{IP\#} & \text{Sequence\#} & \text{Type}\# & \text{Severity}\# & \text{Desc}\# & \text{Slot}\# & \text{Device}\# & \text{Digital Interface}\# & \text{Channel}\# & \text{Date/Time} \\
\end{array}
\]
Display Alarm History

1. Through CLI, access the Monitor prompt.

2. Type `alarm h`. An alarm history will be displayed. See section How to Read Alarms for field definitions. If you enter `alarm` without a command following it, both active alarms and the alarm history will be displayed.

Figure 7-3 Alarm History Sample

<table>
<thead>
<tr>
<th>IP#</th>
<th>Sequence#</th>
<th>Type#</th>
<th>Severity#</th>
<th>Desc#</th>
<th>Slot#</th>
<th>Device#</th>
<th>Digital Interface#</th>
<th>Channel#</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.20.136:947</td>
<td>ALR:1</td>
<td>Yellow Alarm:1:0:1:0</td>
<td>THU APR 14 00:00:04 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.20.136:948</td>
<td>ALR:1</td>
<td>Loss of Framing(Red Alarm):1:0:2:0</td>
<td>THU APR 14 00:00:04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.20.136:949</td>
<td>CLR:1</td>
<td>Yellow Alarm:1:0:1:0</td>
<td>THU APR 14 00:00:08 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8: Diagnostics/Maintenance

This chapter tells you how to troubleshoot Tenor DX operation, as well as how to maintain the health of your system. You will find information about how to view the unit’s LEDs, as well as how to interpret the chassis’ alarms and check basic connections.

Specifically, the following topics are included:

- Before you Begin
- Monitor LEDs
- Diagnostics
- Monitoring
- General Maintenance
- Finding Help
Before you Begin

Before you begin troubleshooting a potential malfunction, it is a good idea to check your basic hardware connections. See below.

- Ensure power cord is firmly installed in the back panel’s power jack and the other end is plugged into the AC power source.
- Ensure the unit’s power switch is in the On position. If the unit is not working, toggle the power switch to reset the system. If the unit is reset, the settings you configured may be lost.
- Verify that all RJ-45 and DB-9 cables fit snugly in each front panel jack. Faulty connections may cause a number of network interfacing or connection issues.

If you suspect the problem to be on the network end, contact your Central Office to verify proper operation.

Monitor LEDs

LEDs monitor the health of the system; they are the first signal that the unit is not working properly or that an internal or external error has occurred. LEDs appear on the front of the unit (LED descriptions are detailed in Chapter 2: Hardware Components.

Check Chapter 2: Hardware Components to ensure the correct lighting of each LED and then see Common Symptoms/Problems for troubleshooting information. If the LEDs are not lighting at all, check the AC power source to ensure power is being supplied to the unit.
Common Symptoms/Problems

Below is a list of common symptoms and problems you may encounter. Use this list as a guideline; if your problem is not listed, use the diagnostic procedure explained in the beginning of this chapter.

<table>
<thead>
<tr>
<th>Common Symptom/Problem</th>
<th>Description/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit will not turn on.</td>
<td>Check AC power source.</td>
</tr>
<tr>
<td>Communication between Tenor DX and the PBX or PSTN cannot be established.</td>
<td>There are several reasons why communication may not be successful. A few of the most common are listed below. Verify correct cables are installed in the T1/E1/PRI ports. See Chapter 3: Installation. Unit configuration may be wrong. Examine the configuration parameters via Configuration Manager or CLI. Network issues may cause a number of problems. Contact the Central Office to perform test procedures.</td>
</tr>
<tr>
<td>Communication with Command Line Interface (CLI) cannot be established using Telnet.</td>
<td>The IP address of the Tenor DX unit may be incorrect. Check Ethernet Cable. Verify the IP address of Tenor DX. Check the Default Gateway Subnet Mask. Check Ethernet connection via RS-232 connection. See Chapter 3: Installation. Verify network connectivity using ping from another network host. See Chapter 8: Diagnostics/Maintenance Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor.</td>
</tr>
<tr>
<td>ALERT LED is on and not flashing.</td>
<td>One or more internal diagnostic tests have failed. Contact customer service. LED will stay on for a minute or so when the unit is powered up.</td>
</tr>
<tr>
<td>Communication with Ethernet Hub, or switch cannot be established.</td>
<td>Verify RJ-45 cable is firmly installed in the Ethernet port. Check MDI/MDIX configuration. Check duplex setting on the switch in which they were connected and the speed of 10MB or 100 MB.</td>
</tr>
<tr>
<td>Communication between computer’s COM port and Tenor DX serial port cannot be established.</td>
<td>Verify DB-9 cable is firmly placed in the unit’s console port and your PC’s serial port. Verify Terminal port settings at 38400 BPS 8N1 No Flow Control.</td>
</tr>
</tbody>
</table>
Verify Unit Provisioning

An error with Tenor DX’s provisioning may cause a number of problems. It may be a simple error, such as an incorrect IP address or telephone number, or it may be something more complex, such as incorrect T1/E1 parameters.

Evaluate your system provisioning. Check all data provisioning information, and re-configure if necessary. See Chapter 5: Getting Started: Command Line Interface (CLI).

Ping Unit

Ping enables you to ping an IP address. See Chapter 8: Diagnostics/Maintenance Chapter 4: Getting Started: Tenor Configuration Manager/Tenor Monitor for more information.

<table>
<thead>
<tr>
<th>Common Symptom/Problem</th>
<th>Description/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenor DX cannot receive or transmit calls.</td>
<td>Check DS1 card Span Status LEDs. If unlit, it indicates that the T1 or E1 lines may be down. Generate alarm list for more information. Contact Central Office for interface issues.</td>
</tr>
<tr>
<td>For DC only: The breaker trips due to excessive current.</td>
<td>Power on/off using the circuit breaker.</td>
</tr>
</tbody>
</table>
Monitoring

Alarms

Alarms help you identify where a specific problem is occurring with the Tenor DX unit. Through the CLI, you can review alarms via Command Line Interface (CLI). Verify all severity 1 alarms first; these alarms indicate that the unit is in critical condition and the entire system is affected.

See Chapter 7: System Alarms for specific information about obtaining and reading alarms.

General Maintenance

Restore Factory Defaults

You can set all system configuration settings back to their factory defaults via Command Line Interface (CLI) as follows:

1. Access the CLI through a Telnet session. See Chapter 5: Getting Started: Command Line Interface (CLI) for more information.

2. Access the Config-VOIPNetwork-1 prompt.

3. Type setfactory. You will be asked if you are sure you want to set the unit back to factory defaults.

4. Type yes to confirm (type no to cancel the restore).

Reset System

Reset the system as follows: turn the power switch to “off” and then back “on”.

Change Password

For security purposes, you may want to change your password. You can change the password via Command Line Interface (CLI) as follows:

1. Access the CLI through a Telnet session. See Chapter 5: Getting Started: Command Line Interface (CLI) for more information.

2. Access the Maintain module.

3. Type password. A prompt will ask you for the old password.

4. Type the old password and press Enter. A prompt will ask you for the new password. Type the new password and press Enter. A confirmation will ask you to confirm the new password.

5. Re-type the new password and press Enter.

A message will tell you the password was changed successfully.
Change Unit Date and Time

You can change the unit’s date and time via Command Line Interface (CLI) as follows:

1. Access the CLI through a Telnet session. See Chapter 5: Getting Started: Command Line Interface (CLI) for more information.

2. Access the Config module.

3. Type `date` followed by `mm/dd/yy/hh:mm:ss` and press **Enter**.

4. For example, type `config# date 06/14/02/22:14:00`. This command will set the current time to June 14, 2002 at 10:14 p.m.
If you need Additional Help

If you suspect the problem to be on the network end, contact your Central Office to verify proper operation.

After completing all troubleshooting/maintenance procedures and reviewing the Common Symptoms/Problems section, you can contact the Customer Service Department at the following:

Quintum Technologies, Inc.
71 James Way
Eatontown, NJ 07724
For domestic calls: (877) 435-7553
For international calls: (732) 460-9399
email: service@quintum.com
Appendix A: Specifications/Approvals
Voice/Fax

<table>
<thead>
<tr>
<th>Call Routing:</th>
<th>Line Side Interface/Trunk Side Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding:</td>
<td>A-law, u-law</td>
</tr>
<tr>
<td>Voice Algorithms:</td>
<td>G.723, G.723.1A (5.3, 6.3 Kbps), G.726 (16, 24, 32, 40 Kbps), G.729, G.711</td>
</tr>
<tr>
<td>Fax Support:</td>
<td>Group III at 2.4, 4.8, 7.2, 9.6, 12, 14.4 Kbps</td>
</tr>
<tr>
<td>Automatic Call Detection:</td>
<td>Voice/Modem/Fax</td>
</tr>
</tbody>
</table>

Line Side (PBX) / Trunk Side (PSTN) Connections

<table>
<thead>
<tr>
<th>Interface:</th>
<th>T1/E1 and Fractional T1/E1 with a built in CSU.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1/E1 Signaling:</td>
<td>Channel Associated Signaling (CAS)</td>
</tr>
<tr>
<td></td>
<td>Common Channel Signaling (CCS)</td>
</tr>
<tr>
<td>Impedance:</td>
<td>E1 - 120 Ohms balanced</td>
</tr>
<tr>
<td></td>
<td>T1 - 100 Ohms balanced</td>
</tr>
<tr>
<td>Jack:</td>
<td>RJ48C (Cable to trunk side interference, RJ-45 straight through twisted pair. A green cable provided by Quintum).</td>
</tr>
<tr>
<td></td>
<td>RJ48C (Cable to line side interface, RJ-45 crossover twisted pair. A red cable provided by Quintum).</td>
</tr>
</tbody>
</table>
Appendix A: Specifications/Approvals

LAN Connection

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN Support</td>
<td>10/100 Mbps Ethernet</td>
</tr>
<tr>
<td>Connection Type</td>
<td>Full Duplex/Half Duplex</td>
</tr>
</tbody>
</table>

Physical

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>19” (48.7 cm) rack mountable or wall-mountable</td>
</tr>
<tr>
<td>Depth</td>
<td>10 3/4” (27.6 cm)</td>
</tr>
<tr>
<td>Width</td>
<td>17 3/8” (44.5 cm)</td>
</tr>
<tr>
<td>Height</td>
<td>1 3/4” (4.5 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>7.2 lbs (3.24 kg)</td>
</tr>
</tbody>
</table>

Electrical

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Standard 10/100Base-T RJ-45 interface (IEEE 802.3)</td>
</tr>
<tr>
<td>PBX/PSTN</td>
<td>Standard RJ-45</td>
</tr>
<tr>
<td>Connectors</td>
<td>8 RJ-45 connectors for T1/E1 connection to the PBX and the digital network.</td>
</tr>
<tr>
<td>Console Port</td>
<td>RS-232/DB-9 Female</td>
</tr>
<tr>
<td>Power</td>
<td>100-240 VAC, 2-1A, 50-60 Hz</td>
</tr>
</tbody>
</table>

Environmental

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>32° to 104 ° F (0-40°C)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>20% to 80% non-condensing</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>-200 to 10,000 feet (-60 to 3,000 meters)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>14° to 140° F, (-10 to 60°C)</td>
</tr>
</tbody>
</table>
Agency Approvals

<table>
<thead>
<tr>
<th>Agency</th>
<th>Approvals</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>FCC Part 15, Class A
ICES-003
AS/NZS 354:95
EN55022:98 Class A
EN55024:98
EN61000-3-2:95
EN61000-3-3:95</td>
</tr>
<tr>
<td>TELECOM</td>
<td>FCC Part 68
CS-03
TS016
TS038
TBR4 ISDN Layer4</td>
</tr>
<tr>
<td>SAFETY</td>
<td>UL/cUL 60950
EN60950:92
TS001</td>
</tr>
</tbody>
</table>
FCC WARNINGS

This equipment has been tested and found to comply with the limits for Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interface will not occur in a particular installations. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

CAUTION: Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

This device complies with Part 68 of the FCC Rules and the requirements adopted by ACTA. On the back of this equipment is a label that contains, among their information, a product identifier in the format US:6LCDDNANDS1NIC. If requested, this information must be provided by the Telephone Company.

The REN (Ringer Equivalence Number) is used to determine the number of devices that may be connected to a telephone line. Excessive RENs on a telephone line may result in the devices not ringing in response to an incoming call. In most but not all areas, the sum of RENs should not exceed five (5.0). To be certain of the number of devices that may be connected to a line, as determined by the total RENs, contact the local telephone company. For products approved after July 23, 2001, the REN for this product is part of the product identifier that has the format US:AAAEQ##TXXXX. The digits represented by ## are the REN without a decimal point (e.g., 03 is a REN of 0.3). For earlier products, the REN is separately shown on the label.

Facility Interface Codes For Digital Services supported:

- 04DU9-BN 1.544 Mbps Superframe Format (SF) without line power.
- 04DU9-DN 1.544 Mbps SF and B8ZF without line power.
- 04DU9-1KN 1.544 Mbps ANSI ESF without line power.
- 04DU9-1SN 1.544 Mbps ANSI ESF and B8ZF without line power.

Service Order Codes For Digital Services supported:

- 6.0Y We do provide billing and encoded analog protection.

An FCC compliant telephone cord with a modular plug is provided with this equipment. This device connects to the telephone network via an RJ45 plug and jack. The plug and jack also comply with FCC part 68 rules.

If this device causes harm to the telephone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. But, if advance notice is not practical, the Telephone Company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary.
The Telephone Company may make changes in its facilities, equipment, operations, or procedures that could effect the operation of the equipment. If this happens, the Telephone Company will provide advance notice in order for you to make necessary modifications to maintain uninterrupted service.

If trouble is experienced with this device, for repair and warranty information, please refer to the Technical Support insert for repair information and the warranty section of this Getting Started Guide for warranty information.

In the event of device malfunction, all repairs should be performed by Quintum Technologies, Inc. or an authorized agent. It is the responsibility of users requiring service to report the need for service to Quintum Technologies or to one of our authorized agents. In the event service is required, refer to the Technical Support insert for information.

If the device is causing harm to the telephone network, the telephone company may request that you disconnect the equipment until the problem is resolved.

This registered device is capable of providing users access to interstate providers of operator services through those of equal access codes.

This registered device provides proper answer supervision to the PSTN when DID calls are answered by the called station, answered by the attendant, routed to a recorded announcement that can be administered by the CPE user, or routed to a dial prompt and this device returns answer supervision on all DID calls forwarded to the PSTN. Permissible exceptions are as follows: a call is unanswered, a busy tone is received, a recorded tone is received.

U.S. Service Center Information:

Quintum Technologies, Inc.
71 James Way
Eatontown, NJ 07724 USA
Appendix A: Specifications/Approvals

Canadian Notice

The Industry Canada label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operation, and safety requirements. The Department does not guarantee the equipment will operate to the users’ satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local Telecommunications Company. The equipment must also be installed using an acceptable method of connection. In some cases, the inside wiring associated with a single-line individual service may be extended by means of a certified connector assembly. The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines, and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

⚠️ CAUTION: Users should not attempt to make electrical ground connections by themselves, but should contact the appropriate inspection authority or an electrician, as appropriate.
EU Directive on Disposal of Waste Electrical and Electronic Equipment (WEEE)

This equipment is classified as Type 3 IT and Telecommunications Equipment under the terms of EU Directives 2002/96/EC and 2003/108/EC. These directives are now being transposed into law by the individual EU member states.

At the end of life of this equipment it must be disposed of in an approved manner according to the laws of the EU member state in which the equipment is located. The equipment should be returned to the registered producer, from which it was obtained, for disposal.
DECLARATION OF CONFORMITY

Application of Council Directives(s):

- 89/336/EEC, 93/68/ECC EMC Directives
- 73/23/EEC, 96/68/ECC Low Voltage Directives
- 99/5/EC, RTTE Directive

Standards to which Conformity is Declared:

- EN55022:98, EN55024:98
- EN 61000-3-2 -95, EN 61000-3-3-95
- FCC Part 68, FCC Part 15 Class A
- CS-03, ICES-003 Issue 3
- TS001, TS016:2/34, TS038, AS/NZS 354:95
- TBR4 ISDN Layer 1-3
- GB9254-98, GB4943-95, GB17625.1-98
- NOM-019-SCFI-1998

Manufacturer: Quintum Technologies Inc.

Manufactured By: Quintum Technologies Inc.

- 71 James Way
- Eatontown NJ
- USA

Type of Equipment: Digital VoIP Gateway

Model Number: Tenor DX Series, Call Relay 60

We, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s) and standard(s) as of this date.

Place: Eatontown, NJ, USA

Date: 9/15/05

Karl V. Stahl III
EMC/Product Safety Engineer

William J. Truex
Director of Operations

Technical File available through: Quintum Technologies Inc.

- 71 James Way
- Eatontown, NJ 07724
- USA
INDEX

A
About this guide 1-1
Alarms
 definition 8-5
 display via CLI 7-7
 field definitions 7-2
 list of 7-4
 monitor 7-2

B
Back panel 2-6
 AC receptacle 2-6
 ground screw 2-6
 label 2-6
 power switch 2-6
Bypass DN 1-10

C
Cables 2-7
 AC power cord 2-7
 DB-9 2-11
 RJ-45 2-7, 2-8
Call 1-11
 Call management 1-11
 hop-off PBX 1-11
 passthrough support 1-11
 public/private dial plan 1-11
 trunk group support 1-11
 Call Routing 1-8
 Capabilities
 call routing 1-8
 CDR 1-6
 data network calls 1-9
 intra-trunk routing 1-9
 IVR/RADIUS 1-6
 NATAccess 1-7
 routing table options 1-10
 SNMP 1-6
 trunk circuit originated calls 1-8
 virtual tie line 1-6
 CDR
 connect with server 6-6
 connect with Tenor 6-6
 definition 6-3
 output 6-7

CLI
 access via serial port 5-4
 access via Telnet 5-3
 configuration 5-5
 configuration options 5-2
 description 5-2
 modes 5-2
 config 5-2
 diagnostic 5-2
 maintenance 5-2
 monitor 5-2
 navigation 5-2
 user login IDs 5-3
Configuration
 getting started 4-3
Configuration Manager 4-3
Connection
 console 3-9
 ethernet 3-8
 line interface (PBX) 3-6
 trunk interface (PSTN) 3-7

D
 DB-9 2-11

F
 factory defaults
 restore 8-5
FCC
 warnings A-6
Features 1-4
 easy connect 1-5
 GUI and network management 1-4
 IVR/RADIUS 1-6
 PacketSaver 1-5
 SelectNet 1-4
 system monitoring 1-5
 unique design 1-4
Front Panel
 LAN1/LAN2 2-2
 LEDs 2-5
Front panel
 diag 2-2
 ports 1-8 2-2
 reset 2-2

G
 Ground Safety Cable
install 3-10

H
H.323 1-12
 border element 1-12
 call registration 1-12
 call services 1-13
 gatekeeper 1-12
 zone 1-12
Hardware
 console port 2-3
 description 2-2
 front panel 2-2
Help 1-4
 finding 1-4
Hopoff Local DN 1-10
Hunt LDN 1-10

I
Installation 3-2
 ground safety cable 3-10
 guidelines 3-2
 package contents 3-2
 rack install 3-3
 required materials 3-3
 wall mount 3-4
IVR 1-6

L
LEDs
 front panel 2-5
 monitor 8-5

M
Maintenance
 change date/time 8-6
 change password 8-5
 reset system 8-5
 restore factory defaults 8-5

N
NATAccess 1-7

P
PacketSaver 1-5
Password
 change 8-5
Ping command 8-4

R
Rack install 3-3
RADIUS 1-6
Reset 8-5
RJ-45 2-7
RJ-45 Crossover 2-10

S
SelectNet 1-4
SIP 1-15
Specifications
 electrical A-3
 environmental A-3
 LAN A-3
 physical A-3
 PSTN/PBX A-2
 voice/fax A-2
Static Routes 1-10
System
 AC power up 3-11
 reset 8-5

T
Tenor Configuration Manager 4-3
Tenor DX VoIP MultiPath Switch
 capabilities 1-6
 description 1-2
 product types 1-3
 What is Tenor DX MultiPath Switch 1-2
Tenor Monitor 4-4
 getting started 4-4
Troubleshoot
 common problems 8-3
 general maintenance 8-5
 monitor LEDs 8-2
 unit provisioning 8-4
typographical conventions 1-3

U
UPDP 1-11
Upgrade 3-15

W
Wall mount
 install dimensions 3-5
 installation 3-4
 required materials 3-4
GLOSSARY

A
Alarm. A brief message that appears on your screen when the Tenor DX encounters a problem (i.e., failed interface). Alarms can be viewed through CLI (see Command Line Interface) or a Telnet connection.

Auto Switching. If a network packet delay for an IP call becomes unacceptable, the Tenor DX will automatically switch the call to PSTN.

B
Border Element. Provides access into or out of an administrative domain. The Tenor DX has two types of Border Elements: Primary and Secondary.

Bypass Number. A telephone number that is automatically sent to the PSTN, without going VoIP.

C
CAS. Channel Associated Signaling. A form of circuit switched signaling.

CCS. Common Channel Signaling. A form of signaling that uses the D channel as the signal channel.

CDR. Call Detail Recording. A string of data which contains call information such as call date and time, call length, calling party and called party.

CDR Server. The server (or workstation) responsible for receiving and processing CDRs as they are generated.

CLI. See Command Line Interface.

Command Line Interface (CLI). A configuration system you use to configure and monitor the Tenor DX unit via telnet connection.

Configuration Mode. A CLI module which enables you to configure all functions in the Tenor DX.

Console port. RS-232 connector is used for connection to a PC’s serial port via DB-9 null modem cable.

CSU. Channel Service Unit. A component used to terminate a digital circuit (i.e., T1 line) at a customer site.

D
Diagnostic Mode. A CLI module which provides a set of utilities to perform diagnostic and testing procedures.

DSP. Digital Signal which provides the required signal processing for the Tenor DX.

E
ESD. Electrostatic Discharge occurs as a result of improperly handled electrostatic components. An ESD Antistatic Strap must be used to prevent ESD.

Ethernet. A Local Area Network (LAN) data network design that connects devices like computers, printers, and terminals. It transmits data over twisted pair or coaxial cable at speeds of 10 to 100 Mbps.

Ethernet port. A port on the Tenor DX which provides RJ-45 jacks for connection to a 10/100 Ethernet LAN switch or hub via RJ-45 cable.

Extranet. Communications with a source outside your company.

G
Gatekeeper. See H.323 Gatekeeper.

Gateway. A device (i.e., Tenor CMS) which connects IP-based networks and circuit-switched networks.

Ground Strap. A ground connection on the front of the chassis is provided for ESD protection.

H
H.323. A protocol standard for sending multimedia communications (i.e., voice/data) simultaneously over packet-based networks, such as IP.

H.323 Gatekeeper. An H.323 built in gatekeeper which performs IP call routing functions such as call control and administrative services to another Tenor DX unit or another H.323 endpoint.

Hop-off PBX Call. A toll call which is “leaked out” of a PBX into a private network in order to eliminate toll charges.

I
Internet. A packet based network which transports voice/video/data over TCP/IP.

Intranet communication. Communication within the
same company, usually through an Ethernet hub.

IP Address. A unique 32 bit address that identifies a network device connected to the network via TCP/IP.

IVR. Interactive Voice Response enables you offer services, such as Pre-paid calling cards and Post-paid accounts to your customers.

LAN. Local Area Network. A local area network that carries data between workstations in the same location. Workstations in a LAN are connected together—typically by an Ethernet hub—to share information.

LEDs. Indicators as to the status of the chassis and other components of the system. LEDs appear on the chassis and other components.

Maintenance Mode. A CLI module which provides utilities for maintaining the system.

Monitor Module. A CLI module which provides a set of utilities to monitor the network and all system components.

Null modem cable. A 9-pin cable used to connect the Tenor DX to a PC’s asynchronous console port.

PacketSaver. A packet multiplexing technology which reduces the amount of IP bandwidth require to support multiple calls flowing between two networks.

PBX. Private Branch Exchange. Telephone switch located on a customer’s premises that establishes circuits between users and the PSTN (public network).

Power Inlet. Inlet for which you insert the supplied AC power cord. The unit requires a 110-220 VAC.

PSTN. Public Switched Telephone Network (also known as Central Office). Telephone Company Switching facility.

RJ-45. A CAT 5 cable used to connect the Tenor DX to an Ethernet, Line Circuit or Trunk Circuit.

RADIUS. When using IVR, the RADIUS (Remote Authentication Dial-In User Service) is used for authenticating and authorizing user access to the VoIP network.

SelectNet™. The next generation of TASQ technology; the functionality monitors your data network for jitter, latency, and packet loss, and transparently switches customer calls to the PSTN when required.

SIP. A signaling protocol used to establish a session on an IP network.

SNMP. Simple Network Management Protocol (SNMP) is the standard protocol used to exchange network information between different types of networks.

Subnet Mask. An IP address that determines how an IP address is divided into network and host portions according to the bits.

TCP/IP. Transmission Control Protocol/Internet Protocol. TCP/IP is a standard communications protocol divided into seven layers of activity. Each layer defines a different aspect of how two devices should talk to each other (i.e., when a network device should send/receive data). For example, layer one is the physical means of communications (e.g., modem), whereas layer 3 is the network type (e.g., Internet). For TCP/IP, it is a combination of two layers of communication protocol. TCP (layer 4) does the actual transport of data; IP (layer 3) sets the rules for moving the data from one end of the network to another. TCP/IP uses an IP address to identify a location for specific network devices.

Transition Module. The RJ-48 ports on the rear of the E1, T1 or DS1 card used for connectivity to the network.

Trunk Group. A collection of T1 or E1 channels used to connect the Tenor DX to the network or another piece of equipment.

WAN. Wide Area Network. A number of LANs connected together through a long distance communications medium. For example, your company may have a LAN in New York, a LAN in Tokyo, and a LAN in Los Angeles. When these sites connect together over the data network or the public network, it is considered a WAN. As a result, intra-corporate information is passed through the data network from one LAN to another LAN site in a remote location.
Zone. A group of endpoints (e.g. gateways, terminals, etc.) in one corporate site.
Warranty

QUINTUM TECHNOLOGIES, INC.
LIMITED WARRANTY AGREEMENT

Quintum Limited Warranty

QUINTUM WARRANTY: Quintum warrants that under normal use and conditions (i) the Quintum hardware products covered by this warranty, for a period of one year, and (ii) all software media, also for a period of one year, will be free from significant defects in materials and workmanship from the date of purchase from Quintum or Quintum’s authorized reseller or distributor (the “Warranty Period”).

SERVICES:
In the event that you believe that you have discovered any such defect during one of the Warranty Periods listed above, you must call the Technical Assistance Center (TAC) at 877-435-7553 within the United States or 732-460-9399 Internationally, 9:00 AM to 5:30 PM, Eastern Standard Time, for initial problem diagnosis. Quintum Technologies will perform warranty service at Quintum Technologies designated facility, provided the customer returns the Quintum Technologies Product in accordance with Quintum Technologies’ shipping instructions. Quintum Technologies’ sole responsibility under this warranty shall be, at Quintum Technologies’ option, to either repair or replace the Quintum Technologies Product within 10 days. All defective Quintum Technologies Products, or defective components thereof, returned under this warranty shall become Quintum Technologies’ property. If Quintum Technologies determines that the original Quintum Technologies Product did not contain a Material Defect, Purchaser shall pay Quintum Technologies all costs of handling, transportation, and repairs at Quintum Technologies’ prevailing rates, including all costs of providing an interim Quintum Technologies Product.

The customer will also be given shipping instructions and a Return Material Authorization (RMA) number. This number is to be prominently displayed on the shipping container and referenced on all correspondence pertaining to the returned product. Customers are responsible for shipping and insurance charges to return the defective product. Quintum shall pay for shipping and insurance charges for the part being sent to the customer.

Please return any hardware together with the accompanying software media to Quintum following the RMA Procedure set out below (you may also be asked to provide written documentation of your purchase).

CUSTOMER REMEDIES: Quintum and its suppliers’ entire liability and your exclusive remedy shall be, at Quintum’s option (i) repair or replacement of the software media or hardware that does not meet Quintum’s Limited Warranty with new or like-new software media or hardware or (ii) return of the price paid for software media or hardware that does not meet Quintum’s Limited Warranty. Quintum shall have no responsibility, warranty or other obligations whatsoever as a result of (i) the use of the hardware and/or software in a manner inconsistent with the accompanying manuals, license and limited warranty terms or this Agreement, or (ii) any modifications made to the hardware or software, or (iii) failure of the hardware or software as a result of accident, abnormal physical or electrical stress, including abuse, negligence, or misuse or (iv) any act of God such as, but not limited to, floods, earthquakes, lighting or (iv) acts of terrorism or war, declared or not.

NO OTHER WARRANTIES: THE WARRANTIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES. QUINTUM MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, AND QUINTUM EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. MOREOVER, THE PROVISIONS SET FORTH ABOVE STATE QUINTUM’S ENTIRE RESPONSIBILITY AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO ANY BREACH OF ANY WARRANTY.

LIMITATION ON LIABILITY: NO LIABILITY FOR CONSEQUENTIAL DAMAGES: UNDER NO CIRCUMSTANCES AND UNDER NO THEORY OF LIABILITY SHALL QUINTUM OR QUINTUM’S SUPPLIERS BE LIABLE FOR COSTS OF PROCUREMENT OF SUBSTITUTE PRODUCTS OR SERVICES, LOST PROFITS, LOST SAVINGS, LOSS OF INFORMATION OR DATA, OR ANY OTHER SPECIAL, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES, ARISING IN ANY WAY OUT OF THE SALE, LICENSE OR USE OF, OR INABILITY TO USE, ANY QUINTUM PRODUCT (HARDWARE OR SOFTWARE) OR SERVICE, EVEN IF QUINTUM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND NOTWITHSTANDING ANY FAILURE OR ESSENTIAL PURPOSE OF ANY LIMITED WARRANTY.

PRODUCT RELOCATION: THE WARRANTIES SET FORTH ABOVE SHALL BE NULL AND VOID AND OF NO FURTHER EFFECT IN THE EVENT THAT EITHER: (A) THE PRODUCTS ARE RELOCATED, MOVED, SHIPPED OR EXPORTED (EITHER DIRECTLY OR INDIRECTLY) TO, OR TECHNOLOGY WITH REGARD TO THE PRODUCTS IS DISCLOSED TO, ANY DESTINATION THAT IS PROSCRIBED UNDER PART 740 OF THE U.S. DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS OR TO ANY NATIONAL OF ANY ONE OF THOSE COUNTRIES UNLESS PRIOR WRITTEN AUTHORIZATION HAS BEEN OBTAINED FROM THE U.S. DEPARTMENT OF COMMERCE OR SUCH ACTIONS ARE OTHERWISE PERMITTED BY THE U.S. DEPARTMENT OF COM-
MERCE EXPORT ADMINISTRATION REGULATIONS, EXPORT OR OTHERWISE (B) THE PRODUCTS ARE RELOCATED, MOVED, SHIPPED OR EXPORTED TO ANY LOCATION WHICH WOULD RESULT IN (WHETHER AS A RESULT OF THE USE OF THE PRODUCTS OR FOR ANY OTHER REASON) A VIOLATION OF ANY INTERNATIONAL, NATIONAL OR LOCAL LAW, STATUTE, REGULATION, ORDER OR SIMILAR AUTHORITY.

Quintum RMA Procedure

1. Notify Quintum Technical Assistance Center on Telephone: 877-435-7553 within the United States, 732-460-9399 Internationally, Monday through Friday from 8:30am till 5:30pm U.S. Eastern time.

2. Provide Customer Services Department the following information:
 • Customer Name and Contact Name
 • Product Part number(s)
 • Product serial numbers
 • Quantity to be returned
 • Type of return (i.e., warranty return)
 • Reason for return
 • Proof of purchase (invoice or PO)

3. An RMA number will be assigned for each shipment and that number must be quoted in all correspondence relating to the RMA in question

4. Shipment Instructions: Customer must follow any instructions supplied by the Customer Service Representative concerning where the Product is to be returned, how the Product is to be packaged, which carrier is to be used, who should pay for the shipment and any labels to be put on the package. Unless otherwise directed by Quintum’s Customer Services Representative, please return product to Quintum at:

 REF RMA Number
 Quintum Technologies, Inc.
 71 James Way
 Eatontown, NJ 07724 USA

5. Following all directions given by Customer Services Representative return the Product to the address given by the Customer Services Representative quoting the RMA number.

6. Any product that is deemed failing under this Warranty and a replacement product has been shipped to the customer, the failing product must be returned and delivered to the address given by the Customer Services Representative within 30 days of the replacement being shipped.

PLEASE NOTE: All shipments require an authorized RMA number.

If the Customer does not comply with this procedure as set out above, Quintum reserves the right to charge Customer for the cost of the replacement Product and/or freight (including duties and taxes) from Quintum regardless of the reason for the return. Quintum also reserves the right to invoice the Customer for a replacement Product at the same time as the replacement is cross-shipped. This invoice will, of course, be canceled if the original Product is returned within 30 days of cross-shipment and if found to be a valid warranty return.